e DECUBENT RESUNE
'ED 183 361 |

. 58 029 526
" AUTHOR, - . Fisher. D. D.t: And Others - ’ '
TITLE) An: Introduction to Fortran Praqramminga An IPT
' Approach.
INSTITOYTON Oklahoma State Unive, Stillwater. X
SpONS BGENCY ' Wational Sclence Foundation, ﬁashingten, D. C . . S
PUB DATE 71 . _ ’ L
GRANT NSF =G Y-9310 (EN) : v
NOT B S '382p.
Y .) . - \) . . LY
.° EDRS PRICE . HF01)PC16 Plus Pbstaqe. | .
DESCRIPTORS . Computer Orlented Progranss Computer Sclence; \ .
| . *Computer Sclence Education: Flow Chaxts; Higher \- &
e e e Rdueatieons Individuwalized-Instraction:- Input—eutput* IR
ot - *Pacing: *Proqgraming: Proqramind Languages-
Programing Problens N
IDENTIFIERS *FORTP&gIPrograming Langua ge *
adsTracr | | . ‘
- This text 1s desi ned tb give individually pacad

ins@%gytion in Portran Proqraming. The text contains fifteen units.
Unit ¥itles include: Plowcharts, Input and Output, Loops, and :
‘Dabugging. Also iicluded. is an extensive set of appendices. These
vere designed to costain a great deal of practical information .
necessary to the eodrse. These appendices include ilnstructions for
gperating card readers, 1ister3, printers.and terminals, as well as a
@@mputer science glossary. (MK)

-
4

-
o'- . -

- . . L]

. v
e

: ‘ -/
ﬁi&:‘ . \NJ | .<
S S
3) . W ¢ .
3
g Y x ,:!
Y j‘ :
¢ o . ‘ » . , _‘?..
' .7' L . . Xl ' . ” -
- ! ' ’ N A . ! ’ J
. - : Yo : AR T
m********w****************w*********#******%g****************mw**** .
* Reproductiens gupplied by BDRS are the best that gan be mada - *
LK from the original document, kT

‘}'a********x***w*m*****$***********************f****a******************** .

’ : . _ P
v . ¥ Cor- ¢ . o .

1 ¢ . . Al

. h
-~ o . A
. t : ') - FEMECICR T REPSIOOL, L T, _
ah . U DEPARTMENT OF u”.m‘ AATEFUAY HIA-. pu HANIE D _ . - C
) r" COUCATION 8 we s ang Ie MATEHIAY A 1 LR G dTED BY B . . o
; NATIONAL INSTIJUTE OF . v M L\ Qh ‘) oL o
; . f EDUCATION (M‘)/ . Qr w _ st
) . . .)

CHGANIZA YN R Ly I .
AN Y g VIR W OIR (MINITEIN, - g

v ODCMENT HAS BEEN REDRO ’ '
N . . a e
!) !' PV B T v AS RECEIVE O F ROAA .
SRR XY BN AE N ANRT VIRV _&’ . N

. \ &
‘ DTACED DO ONOY NECENLARG Y KE sy . . . » . .
N A NATIONAT INY LT bl b Ao NS IR,) s
Fir Qs 0N St N GO by 1o N 'Hi’.‘HMA\'I\)N RELAR BN T : - R
. . o

"

lamoma State Unjversity . -
anuary, 1972 "o T el
~+ Department of Computing and Information Sciences . .

W
FRIC..

Full Tt Provided by ERIC.
Ly

BEE Y

3

GENERAL 17
FORTRAN PROGRAMS .

‘T s 4

Y
ARTTHMEENG.
CONGEPTS

1.

ot ;«?aauéemc
—

-

14

T

_FORMATS 11
¥/0

& [S,

R NSRS S

[V S

SUSPROGRAMS 13
' %

T
LOQPS, 10
| ITERATION

R

© ARRAYS, ¢ 9
SUBSCRIPTED VARIABLES

- i

o 1
|conpITIONAL 8
BRANCHES

.peap 6| |
WRITE

I

KEYPUNCHING 5
PROGRAM DOCUMENTATION
RUNNING .A SIMPLE JQB

2
FLOWCHARTS

—
) |

: [\

: <

UNCONDITEON-
AL BRANCHES -
STATEMENT _
 NUMBERS

CONSTANKS 3
+ | variABLES
EXPRESSIONS
‘| ASSIONMENT
| STATEMENTS ¢ |

-
o

i
LI

pales L NP

Ll

TERMINAL FAMIL~/
© LARIZATION
COMR CARDS -

(Immadigte auceoss undt)

LI

N

.

s . n F i
ORTRAN PROGRAMMING
HIERARCHY .

.
Ry
~
-
e
. .
l.
»~ [
1
il N
A
] .
y
.
"
AN
- “
v *
\ - N
Y i
a . .
‘e
. Lt
Cod
.- g
.-
{
1
oy
#
&
. \
~
-
4
g
. \
T
.~
o .
- . i
i
Y T
7
b
-
' o
o>
Y
i .
. .
Al
-‘

T e e A e I bl T i] et . sl e L T TR T ~rs s = £ Bt b e ey [T, .
T

and reviewa. - st ' B - \
. -

) _ ,
N\
An Introduction Yo Fortran Programming

An gPI Approach \ ‘

’

o4 Gepyrighe () 1970 .

D. D. Fisher .
T. E. Bailey

D. H. Secper /fi '

) L ’ 1

Oklahoma State Univeghity

~

A1l Rights Reserved .) o
Printed in the United States of America

Composed and Printed by the

L]

Division of Engilneering . .

r

Oklahoma State University . ,

Stillwater, Oklahoma 74074 : 4§

A B . . /) . *

(/ No part of this material may be used or reproduced . ’ .%

" in any manner whatsoever without permission, "except in

-

the case of brief quotations' embodied in critical'articies , :

1 (] .
.
: L]
7 ' '
. >
L . . 2 . '
-Y.; .]
. -

1

by o .

T e A e Bk i * = FA s i AL S TR AT Rl e B B B b b e TSR R TR A e ey kGt (v ey g 5

e
o v, . ! - .
[y . . * ‘;%
. \ - N :
vt . .
- » .
'

PREFACE \ . " R _ '
The main dbjectiva of the Fortran p?%gramming units is to ﬂe* y .
velop the neceasaty gkills to . | ‘
N ¢ O 2 'translat; a probléfu{“éiﬁammem to a pmgr;,'mmg problem B B
N statement; ! A
(11) develop a deb&gged péégréh thét obtains a ;workable"
. solution for the original problem; . ,
(i11) éﬁrepa e a'daa;ript}on of fhe proéram se that othera nay ‘ \
) maﬂgiuse of the program, or the aughor may use the pro-
N gram at a later date Qﬁch a mininum investment in ;ime;
(iv) accomplish tﬁévpreviogé thfee_skills with,xaagoﬁable \ %
: dégrees of efficieney.« ’ _ LT - _ ' L
. - A - . ,
L { _ fo accomplisﬂ;(ii and (11) it is hecessary to learm g coépute; ax\f
. MU programming language gnd to pfactice/fhe translation pﬁas; foy a , ./;
;) _ variei? of problems. Praparing progxam dascriptions and develop* ” _ .-y*-

ing efficiency will be emphasized at each step. Several programs S
. .

o will be written that may be used as problem solving tools in sub=*

sequent courses.

. . (]
- “ 4 *

e 5

RN ' A programming language is a language used to describa an algo-

rithm, that 18, a procedure for solving a problem, in auch a way

Y

that a computer ﬁan interpret the "algorithm and can carry out eaach

L)

, ' of the anapa prescribed by the algorithm. Programm;ng languages =
s vary ia ccmplexity. In general the languages that are easiest for L
P .' . . N) . hd &

"

maankl b A R o T A e PR - R Y _Cn L PR e, - B T S U P OO S TP R

. 7
the machine to use require considerable knopledge of the computer
on the programmer‘s part. On g&e other hand languages that are .. .

easiest for the profgrammer to uge generally require the computer

‘to translate the program from the -source language to machine lan-

) guage., The translation process from source language to machine or

AN

, gram will have to be run on differant computerg, it is worthwhi}a

.Fortran 1s a subset bf USAS FULL Fortran. It is likely that you

object language is a task that computers do reasonably well; con-
, N . . .
sequéntly, most of the programs written.today are written dn so- e

called "higher level" programming languages which: invoke the com= .

/ . N

puter to tranélate as well as to compute.

Fortran (an acronym obtained from formula translator) is an

example of a highet level programming language.. It is the most -

widgly uéed programming language for scientific applications.

There are many variaéions or dialects of Fortran. Ydu should be o

aware that different computer manufacturers support d%ff@rant

dialects, one manufacturer may support different-dialeéts, and v

users may credte their own dialects. In order to be able to move

@,

programs from one computer installation to andtheri it 1s pecessary

®

to have:; set of standards. Appendix I gives comparisons becween_

9 ; .
USA stanMard Fortran‘and .other avallable Fortrans. The USAS BASIC

will discover useful features of some of the cqmpllers'that'are .
not included {n USAS Fortran. 1f you usge those features, you do Lo

“so "at your own risk." Some\features got included ip USAS. F@rtran / - .

are very dasirable' consequently, if it is unlikely that the pr0n
1 ~t

to make use of those feagprea. On the other hand, if a prQ§ram 18 . .
' . ‘ N
td’be run at sevexal different computer installaQ}ons, only those

- . . T~
.]

SoRTMR Tt e TR YT TN YRR A AT e NI e s SR e ST RS S wvdn s B T e T B T s ¢ B L L o LB L T Sy ol l,_‘_ e L S T D R T T T ——

- . features listed in USAS Fortran should bg used.
) A

T Thib is an axample of one of many possible choicas you may

make while completing the Lomputer sclence unita, \ Qther decisions

3

- will be requizcd to ‘get a program to "work," to transform a work-
ing program to an efficient program, to "tune" a program, etc. “An
- aspect of computing’many find challenging is that, in general,. there

. ' : L .
e . 1s tic bast way to attack a new problem. You will find this to be

true in some of the progyams you attempt to develob:

L}

-t e Othelr higher level.progragming lanéuggeé in widgspread use: %

?

are listed below. .

Cobol « a business language

3

-

. RPG a report generator used primarily for business
- applidations
PL/1 combines features of Algol, Fortran and Cobol
. Algol a scientific languaga
. Basic a version of Fortran used in conjdnction with.
.) typewriter like terminals
APL .4 mathematical language .J _) /’

Assembler a form .of machine language

L
14

Several dhdergraduate and graduatencourses make use of these and
s LY e - -

-~

« - other programhing Iahguages.. Translato;e of varying sophiética~-

tiofl are rquﬁre convert programs from these source languages
to machine language. : S .
. .)]

Take some time to examine the drganization of this book.

L The instructional materfals are organized into units in the text..

4

Each unit contains a dgbcriptive title, a ragionéle'explaining.the

purpose for fﬁcluding'the maéerrgl~in the unit, thé bdhavioral

) , , ' _ X
iii v)
y .

4

LI |)) o

- . . Y :
hd . . N T o y w
. . .
]

* objective that states what you will be able to perform aftar you

7

have mastered the material in the unit, prerequisites for the unit,

-

a series of activitiesa dssihned to point you in thé‘direct%pn of

the o;jective and help you. attain it some self evaluation matbri-

. als sp that you can assess Yor yourself wh&ther you have attalned,
the objective, assessment tasks with which you demonatrat& to your ,
Instructor that “you have-attainaq the. ijectiva, and . finally 1nh- ot
atruct;ona telling you what to_do next. . |

The'booﬁ.also ¢on£ains ; rather ektenaive set of appgnéiéés.
. Read the titles of the "appendices i; thé‘Table‘of~Conte§fa, $nd
thﬁmb‘through them. They contain a great deal of pracﬁical infor-
¥ .métion that you will need throughout the coufsew‘afarticularly at

| this time be aware gf the appendix containiné the glossary of‘terﬁé.

If terms which yoﬁ do not.underagand appear in the text, 100@ for
them in the glossary. If there aré qmifted terms &hich'you think

w

! g shOuld be inoluded in the giossary, write them.down and give them -
4) . N e
to your ithructor.

The page numberg in the text are designed to be used.for quick
< referencinyg. The fiést number is the unit number, and the second
nunber fumbers the page in sequence in that unit.' For example,

page 8.3 1is page 3 or Unit 8. Aﬁpendices are 'numbered similarly

except that Roman numerals are Ssed. Fox example, page V.2 is page

» »

L]

v 2 of Appendix V.

. ' The cover of the book shows the sequence of units for' the
\ . . - . .
. coursé¢ in the form of a flow charft (Q}scusged further in Unit 2)ﬂ

This fléﬁ chart will help you to assess your ﬁrogreas toward the
. .) . : . . * »
2\\terminal unit.

B

W PR o Beet e L S iai ! s RS R R AT i Mo b G e ey e o EARTITIRL o ps

%
‘ - r/ . - .
Unit 1 requires a card meader with optical mark read (OMR) ’
capability. If this feature is not av:ailable, then Unit 1 may be)
o‘mitt;ad without disturbing the sequénce of the material.
- . .
. " . ‘ ' ° ' . “
* N '
!
- . @ :

. e -b
¥ . N
s
_’/\ \
L
~ .
»,
-
. ’ .
o o “
N .
. . ' &
L
.
» - .
o5 -
-
- . s
’ \»
,
. R v
-
-~

] . [o
[] s) .
A >l
g » \‘ .
. R \ @ ° ‘)
A V .9 l b]
¢ /
« M . LEY » r -
. ¢ ' 8 , o

T T T T SIS S e e AR e R v mmar

TABLE OF CONTENTS

. Unit ' - .

- K .o _ ?

| 1. Becoming Acquainted With éhe Computer ,

‘_ v ' 2. Flowchért;

A o 3. Variables, Constaéps, Expressions apd Assignment Statements

-7 4. statement Nupbers and umonditgg{g{gmches | o L

5." Preparing a iob for Running on the Computer
’ 6. }npuE and Output ’ ,
é. -honditipnal Branching or Transfer Statements
!9{ Arrays and Subscripted V;riables
10; .Lobps ' }/
1¥. Input, Output, Formats
12, . Arithmetic Concepts ¢ N
13. Subprograms
14, ‘Debuggtpg _ 2
16, 'COmputer éoncepts-“ . R
17. ' General Forttan Programs | - | e
Units #7 and #15 are omitted, © | o™

. APPENﬁIX\}. Comparisons of Various Fortran implemeﬂtations
K \

AP?ENDIX'II= * Computer Science Glosagwy _. _“ : - R

' L)
APPENDIX III. Running a WATFIV Job on the IBM System/360 Model -
. 65 User Terminal

) A?PENDIk IV, - Additional Instructions for Operating the IBM 2501

, ' Card Reader
/7 H

. - _ - APPENDIX V, Instructions for Using the IBM 1403 Printer
« o ¢
: APPENDIX VI. How to.Get an 80/80 Listing With the System/360 ‘
~] ' User Terminal .

= 4

a

APPENDI;\VII.

APPENDIX VIII.

\

APPENDIX X,

A

Ruﬁhing Fortran Jobs on the IBM 1130 Computer

User Terminal WATfIV

Activities Tables)

L]
s
A]
.
4
o
-
\\
'
oy
]
'
o b
.l\'
\ o
5 { *
. Y N
~
)
]
« N N
& P N
£

L S hd --~~—--'~\'\--~\-r—~“‘*-’ﬂ'-!7~- T e P - T~ gy »-_-*'wfv-—-»v~iwg-»-n-T.,———:-.f:—:w‘ s "' . M ~u .7 r--——=»"=r,—--:‘t—“-ﬁ-—~‘=ﬁ=~m=-?--<;‘a—° - -:-t.w:“»v-—W--<n--l=i:—~m-v-<:-—~-~u=
g . : . @ 1, :. ® " Ty . N :.' . . L'; S '
- LWL ETR e g
'~ fn' . .‘ l ‘%
_ ' / - L o . . |
- R . t
||) -) / ’ -
‘ \ UNIT #1 (COMSC) S
i > y TITLE: Becomlug Acquainted With the Compute;;ﬂ , ' '
0 ' . ~ ‘ ‘
- " RATIONALE: Lf you're going to use-a computer, you wust know © o
s : something about running jobs on the computer. You . .
- ‘e . . P
) -/ must familiarime yourﬂﬁlf wich«som& bﬂttOﬂa hnd lights S g e
- . - ¢ .. R .- ': e .]
‘ . ‘ ~and nqi&é&:- geﬁ?must overcome any. fegra thac t ,%gmﬂﬁlgl,.i ol
. puter is aut to get ytm o that it mls;t**hagm y;m,. wch Tl N o
= % ?&6’ .' . e ! ': . 'ﬂ,f v \‘l.
3 must alﬁo get gome tpnfﬁdence and not be afraid that “\ a—m- fﬁ.-g ks
. . ;-. SETRY SN
S : R e T
you will harm the computer. . ‘ R g%‘w» f\
-;_ ‘But all these ‘reasons are less important thhn the R A
- resl rationale for'this unit. We want yon to have some N S
© a . ' - ' v ..
_ fun playing with the computer! We want you to enjoyf* L b Q@"
e | .) -
. pushing the. buttdns, seeing the lights, antd hearing
the noises! Relax, go through this unit,-and have a. L
t . - . . ;
. great timel . y L : .
- : .‘) . . 5 . e N {- .n . . ' ‘c'\“
" . . ~OBYBCTIVE: At the end of this unit you will bé able.to demonstrate
- . : P . Y . .) . . . ‘ -
:\%\ 4 thac you can run a.jqb through the computer , including .
N, . operating £he card reader and line printer, using con- _ -
\‘_. LN ") N
o o ‘nrol cards norrectly, and marking OMR cards. .
u") !
, .ﬁﬁEREQUISITES: A wilLingness to try, a aoft Jpad pencil and some
R D confidence. , e s T,
\ N . - : : ¥ ‘
\\ R N
L RN .
N, \\ ' .
. 1:1 s) + >

-
]

TS S R N T — Gt [NI e gt T
. ~

ACTIVITIES:

OMR. Cards

-

‘A.

OMR stands for

-

Gardsf

he'll_bagin-with'bMR computer

puter

s

£

the Optical-Mark Réaq:fehaufé available on the }on

v

1

The OMR Fprttan.éard is‘ﬂﬁown‘in Figure 1.1.

card reader.

=

‘- =

2

A AILVIS ASLVA - NYL L& VIO 4

B0r I3

c J:nnﬂin%uunﬂvn‘uwnuxﬁuvnvﬂto\o
3 . T ,0 =

1 T - - - = & E
: o @«@a@%ogggtﬁﬂ
i

oD o U\evna\u?nu...mu ugvnaungﬁuvnrﬂzg
CED<EDaCouaD e Stgraﬂoé.ﬂugaﬁnﬂ

nwu\mﬁ P DNCED-CSD D Qvnﬁwmxﬁuvgzg
- x - 3 o « < -
G0 <« =020 ouirD o Gfmn (=]

| C+D CiDNCADLSD D CE>Cro2 CDwE T GHONGO

" x < 3 2 O & © e
O« EDR00UED @ SLwl DI Do ID G0~

D Cr UsQO?nul..v uﬂuvnuuwﬂnxﬂu,vuﬁz@o :

o o
nnUAmBQIOCgD 8%8“8!8

SO D050 3 CR> OO CR=E G0N
- ® o T Zz 0o &« o =

CED o ORAAD © G DA S CS T D~ D)

o] n-USQ,UTAI:d -] BVﬂnUWgXﬂv.glg
=
anUAﬂBOIOA\.NtU = 8&8..863"96’8

G+ Cr Ufﬁ»U.Tﬁ U@ﬁgx.ﬂg

=D An..uhvon.)ocn.ﬁ o Q\m.tgrgﬁaﬂnglwuu '

GO ConlaDr S0 o CE>COSCDRED»ONOD
- x - x F (o] G. < @&
O < CERO0WTD © G D GO T~ D

n.vU cr USﬂRUTﬁ > ﬂuVﬂ:UW.ﬂUggg

© . <o e .
ﬁA@ngg DD

n.vUﬂU.Sﬂu\UT@UQVﬁ&UWgXﬂYQ.MvZS
- = - = z o S < -

O < CDRCOUET € GDwGDw DT DIGD- D

D C OG-SO D nuvn Uwgvnﬂ?ﬁrﬂlg
- x - 2 =]

ou;AnUBQ/OCQ.O o QUESFQDUGOAUH@OI@&

C+D C-DWCa=CSD o &vn PECDXED>GINGO
- x - z < =z

<D 0owEDe gglglg ..

n.fU COVEFD-CD D QVQ:UWQXHYQ&UZS
- x - 2 o] -8 =] &

%Aﬂvﬂ@. DG e @ESFQ.BGQ& G-

—_———— e ———

C1D CDONCEORSO = ﬂuvn UngﬂU\.nrAvZQAu
- x - 2 ¢ o =] -4

hn.\UAnUﬁQAU(&.(U ﬂ.a»..vr.,ﬂa Qo 20T -CTD

C+¥Z LD ﬂnlrﬁ/vun“;vn lwn“l.ﬂuv\ﬂe?g

T+ ¢ US».u.uY(I Ug\n J.hnﬁ [g g .& Bt 5]
z a F

hUAﬂ..“\.uQ/\LQ.%. Drqu.tS LhUu..lﬂHnVD.U -0 X

COCD o nUﬂv
TERILES b T34 WG (RAZ 4015

G5

=

CREGD ¢

wnfcn o
SHUIBAM MIMINS
o wle

Figure 1.1 OMR Fortran Card

The left~hand éide of the card s enlarged and is shown

ianigure 1.2,

The card is designed so that most key words -- such

as WRITE, FORMAT, STOP, and END -~ cap be obtained by a

single pencil mark in the box associated with each word

. i@?}

Statement.

in the lower left-hand corner of the card.

. numbers are marked in the upper left~hand corner of the

3

i
-«

,/ .

¢ ¥
o !)
- m
»H “ ,v aw v,
. . + x ~ P N M = . =T LZ - v
L~ - - o
” . w i - = Z Q e < £ ¢
: * - o -
i, o ~ o | NIOL o B e (F o [) ~ Pl o " & |W 5
m e J :
. | .
§ [
E ' ~ $ m a R
b y
@
m . . h
\\/ . ! ~ : : ad
qE70 ¥vIv¥d H IVONIINOD IKZBI0D _mmvEE Tvdd N80LI¥ GNIMEY dO0LS NI¥HnS ALTIM o
‘ m _ . s
Lo -~ m - ,g ..,m
- o
. ! o~ = ~r L [3
& = Cw
, | 1o1iaa A1 EOAINI I¥DIOOT INI¥d HONAd avay o
w, . . : @ -
L A _ . 5 0~
2 " mb - B)
_m i o~ MMH -3 IR m) cm .
m - SAsgl$ aNZ AYIRZ AIDZ TYVNYEIXE IVWEOE 0O o9 . b
| _ . ’ 2
.m 5
_. - 4, &
; : o
m I o~ m mv ~ v s .m < o
| - .) > S
L - 4) R4INZS | X1D400 ZNNIINOD VIVQ | NSMEWIJ 04 mnummmk i
l_.‘.ﬁ - - 2 & -
- \ > .
8w | ”] s
. - [mw (3] w -~ | B m \\
. | . s
STETON INTHIIVLS q40r's ROISSY 3A0Y¥4sSiE vivd xig TIVO EVRO i ROWHGD mc e
. . _ - ;
! hd) °t l“..
t ’

B.

. the rest of the card.

‘" be clean;. else i; may clog up the card reader.

T T B Caaicia o S SRET S b e e e

r , ~ %

- card. Lommants (nnt actually a part of the Fortran pro-

L]

gram itself) may be Inserted anywhere In the program by

marking the COMMENT box and then marking the message on

The main pprtion of the cé{d is used for yarilous

»

Fortran statements. Here numerals and special characters

v

require bnly a gingle mark. Tﬁe letters all require two

- . "

~marks, either Tn poaitions abqve and balow the letter or

on both sides of the }etter. The catq is designed so
that you may write in”the boxes along the tob of the card
the characters marked on the caré, thué simplifying mark-
ing the card and providing Eﬁe_information.marked for

later reference.

»

It should be emphasized that ordinaril& a single’

pencil mark in the box with a soft lead pencil (No. 2,

PIOV A -~

for example) isg %yf%@cient. it 1s not necessary to black

:

in the box completely. Sometimes marks that are too heavy

will be misread by the card reader. Ball point pen marks

are ignored, as are marks from most other writing instru-

- 4

ments. Pencll marks may be erased, provided that they
N

are erased very thoroughly without damaging the c&%d Be

—ven—

sure to brush the eraser fragments off the card; it must

Fihe

Examples~of marked OMR cards

Examiné the card in Figure 1.3. What 1s marked in

the card is written along the top: Column 1 contains

L,
¢ . y

b

1
/
\

e LT CIEERL Rt AR s ST R PR - a5 A A AT TS e e s, —am e e e

1.5

g

v
L}

S

R R
)

A

the character "A"f;' columid 2 contains "="; coljmn 3 con-

e

~
-

WO WET Sasy port
£ g E%?«G Ai3LYR - NYBIB03 TYOLLO

m C+D ﬂ J.\nnUTnMngvnuUWﬂUxﬂwYQ?g

ﬂnvﬂ.ﬂ?@CQ\U (-] gglﬁvﬁlg

et - s —te e -

‘o &D O ﬁ USnnnvlﬁugnnUngg .

-

; m. [o ﬂéﬁugvnnuwggg
PN gAangéngﬂﬂﬁoﬂﬂg

oy D ﬂusowufﬁunmvﬁ.uwgﬁﬂg
K> gagogogﬂb

& oo ﬁ§0@§8‘8]
= gﬂ@ﬂgogggg

& oD mﬂagvﬁugwﬂﬂgu
oy x P X & [+ T < =
S CDAESSONOAD O Gl DG S o Q-

ED OO CrORCICICSD D R DB GO
c- x -t

. --ﬂ.vu ngugynuuwnﬂunﬂ?g
- = ﬁh@gﬁ.ﬁog.ﬂggg

o .7 ‘&= oD ﬁéguggg.
: ﬂ ggogg

' '“U. < G éﬁugﬂﬁxﬂ?g
] ﬁhgoggg

| = oo nu&QUIguﬂwvn uwnUx.mUvm.ﬂzg

(=]

(=] gg&dbggaugg.

(= -

-
+ m = ghgngmvﬂglgn

Z = c3 \USSrnwAu\lw,vm,@wnUUxﬂv\werﬁb
™

_ &= GO OUSQU_TQ n.Muvn UWQKBYQ&UZS

Zz (=4

! w@ @Agd =] g(ﬂ\mfgb\\ﬂﬂglg

= ﬁ;h@ﬁgoh)gﬁﬂa(\ﬂ Qﬁlg ,

" om ED D COwCE-CSY s CE>Cx Lwﬂuxﬂvn&urﬁta

-4 kel [<

G a-ENEeO O T © gighﬂ‘ﬂnglg

o

.@oémn‘onﬂu

& CWEGD Gl

ED GDRD D)

va wofas e
S ITIW KIMAINLS

1 14

% Sn & T R =
B S mm on wm

T ¢ o o T o2
QK3 EIK3 ADI EED om0 (L9

= 2y e o

o
L5
2 .= . PIIU
(X =TT e
- - ’

Again, what is
Notice that .

("'; column 2 donfains "6"; column

ete.

TR TN
N T

Figure 1.3 Example of -a marked OMR card
Examine thé card in Figure 1.4,
the keyword "WRITE" is marked in the -lower -left cormer.

marked in the card is written along the top.

Then column 1 contalns "

~

-Q contains

PEZ <R S

=

-y

e

o TR e ke
'

ey

1.6

4 G&ﬂUihzw§whdhm AlZLYHM - YEBI502 TvL0

- —— — e — e

. = \0U nf{slﬁunﬂVﬂowgﬂﬂvg
3 @A\«“\gvgogbﬁ!g

mv T Ua)\.nUuln%.vU gv.ﬂonggoﬁulg

mw D n..h.rnRUo!hMu Qvnggg
. ﬂ gkﬂ»ﬁ??‘ghggg

T CeD nUS\.uUTﬁMUUQVﬂ Uwgﬁnﬂvgzg

\«

= nBAAUO.Q/UCQ\UD Q‘%ggls

= u.ﬁQUTnMu,uﬂmvv\muwﬂUxﬁVQﬂZOﬂ
= ﬂnonn“ogundoggtg'g

1-

) @ C+> 1§UQVHUWQXHUY§S
mv gﬂmg.bﬂbggg

e & 42 C .\Sﬁ QVQ-UWQ!GYQ&UZS
<

ﬁ fa=) Aﬂo.n.)oco.d) Sx@ﬂrnnueaﬂugn

—

4 &> o © Uﬂﬂu?@UQV\OWQNﬂYg

mu T2 C- UtinﬂU!n.hu > QVSWQKHYSZS
o ™ < -4
= hAU\.\O)QL.Q.AU o 3?868! ST~ D

= o= AUOQ,QXKU s ga&anﬂuﬂﬁng

== e n k\\.u).lnv JnMuvn LWﬂUXﬂYﬂw?nYO
- - 4 & (=} -4
& C=Ce= UQ/U.\.v\U = W\U.O (lQ.ﬂU.lQ”lGAU ~>T

<

L -
E= Do T ZesCaDrcst = “vwfwnmxﬂvnrﬁznto

©. - x - 3 E-4 < & x
C ﬂH O < B 2 U;n'\ctunu‘n.ﬂ..nwuﬂqﬂ

g C+T Tz WHUIPAJ UV\&UWQKHU O G
p— D ~ £ - c e’ 4 z.

= Qu:nllQCxﬁ»\Unw.W‘l(Lk«.U!Ul\ .u..\.;mlllouuu FE

E T2 € ..;..akt!..ul.ﬁ.o v!uwaﬂvd.ﬂ\:U‘.ﬂ
- H z] E

£
] ﬂ/h == \ﬂ)A&H.I.@IV =< Uﬂ{nl.\\mv.rnwbl.(n.ﬁllox -

f——————— e e o L T e

&= e < \\.nxyP/ z -, . uw]vltﬁmﬂ - o~ 0
A N . - - =z 2 ﬁ =
i = n.whuA\Hl.l\nn...U‘n-(.HnﬂJ\UI\.\xﬂll.amﬂ/lug >

SO I TR T DRI A ET Gl e

_— - s
< - = z = F] F3
= =l aiEEl s FRP e P . v $n 2 >T -7
e T oz .
P] = OZIeI LT ora ..-/luq.mv1.w1i.\ﬂ.|v gl o
N ” - F 2 - x
oy o el = P aalb R o uh.,“..nl.n-.v\.u-nw.r,
2
J el i Tl T T ot oty T e
4 wraw (wshe vektle® w7 FR Raw £ ot o
| WIETsi= =t mm e om0 22
r d faa”™ | * —M.!t oy LA RN A EEC ™
- = caul~w o=l == -~ =
4 [; wE L AT S T we o el R
I G Futem ltTlo s - - o - | gpom]
AN w ol & @ VF 1dw vVawm
3 = 3B re |- ~ LI ool T -
A W Sa38m N ARm3rs) - * TRoEeRE e e
| - - a

N Cowm my o

Sample OMR card with keyword WRITE marked

Figure 1.4

Look at the card below and write in the boxes

o

SELF EVALUATION:

at the top of the card what is marked in the card.

| =

.. O¥¥DININIIVIS A4IVM NYEIN0Z WDIeD

= Gy Jﬂﬂ:UYﬁVqunhvVﬁ:UWgKBé
= z =]

== =D« .hlﬁﬂ?g =] §G\Qﬂuﬂ8’ﬁu

————— e R

2 So o

= Dgrgagﬂgis

= G+ C USQU?PO UQVQ:UWQX&YEZS

b4 - z

L= §A§Dﬂ§§

, nw C+D Q§U§§
. @ ghggnggﬁgg

m SO Qi oaCaDeCSO = Qvnnuwgvnﬂ?gzg

. m oD o Usn»urnwuﬂwvn u\gxﬂuvo.auznro
ot -4

m C+D O LSD»UTO.&UQVQOWQ&.GYEIQO
o e

m QU)AuBn?tCnTU (=) @U(Srﬂnuﬂmmug

& G0 C Uﬁnuov-ﬁ'..flbugvn UW!HYS»S

L4 -

= QUUA@UOIU(Q{H. o ggf\aﬁglg

D C Uc.nunvtnu.Wu = QVﬂ Unggg
- -4
mﬂvanmcaQ/uCg o ﬁuorgﬁgﬁo.mulglg

- F'S - © <

P—— e e -

5 [S Uﬁw«U? [~ ﬂM.\vn meuxﬂuv.n.&ulg
© - - Z (=]
fa—ol S > en?bcnd.. =3 @?;;;bn.rUNOAY.QG

'{ﬂ

xl.r\ltL\.+Hn U.snn ,tnllj ;gvn Ungﬁvnvnwzg
-’ .=
= =< [\nn?uxat.un Etgrahﬂsn.ﬂwuglg

EE T Coow l*LYnV\UQV&U\nHRﬁYg
o o o -4

- - k4

= D<= DO(ULOQU WJU..SFQ-MUGﬂh.UNSIS

EE Gl TSI o TR >CDRCOREG > GRENGAD
~ < = — = z < < < k=4

= o= sa T o ndu.grﬂ.nugg

P - e v ——— e —— e+

TR Cel CLcCaTeIlnmum ‘..Vl ST T REDNTD
-~ . - E - Z z C & o 4

= o0 < Sz O 5T o ~ G G ST 2D~ 2D

e e e e e e

TED OCHD L TRt s TE>C~ 03T & 0 - Casdme e

- - x - = Z b -8 > [

W e E=a S M e T TG T G T N T D - Y
)

) -5
&D o C USh.#\.VT@U QVﬁ gxa&
4 - E 4 - o~ < -4
= nnUU Agg [+ ggﬂ s

L= ces c. usnjrnuﬂuuﬂwvn.ungﬁuvﬁﬂzg.....

= oﬂuA@agﬂogrﬁwvranuaﬁﬂﬁoﬂlﬂﬂ :

: @ @gbggﬂg

=
=
G C+D C v eSS s muvn.uwﬂuxﬂUvQBzS :
&= \ﬂn.:umhn?o@un ktnaraﬁcﬁrgu@ﬂ ,
=

et Y=t K enu il cdo Bl e Sl e e N
FEOR | WA a RIS NE whh Y BS @ S
D OO ™T Bl C5 s = o —n o
i 2 . ;¥ AR W RS R o
E o | r oo o5 o vt s e e
* wSR e a3 a3 A Y TG §F 0
SRRt bl B b ol i ene BT S e W
XIS T W Mie.- G www
_wul Tof e |- 2 ES & T oL
SE3OmT LxInz. g M A A e
Y - -)
-
~

T~

ey

R IS Sy PR —3 St e = Ane et g —.m = - .

-1.7

- The following statement ds marked on the card:

- T FORMAT(IHO,FLO.TY :
_ ., : L : : “ .

o ' - ‘. The "4" is-markeg in the block of gtdtamant'numéefa 12‘ B

\ ;_fche uppér'leftwﬁanﬂ corner; it-is.ma¥ked i% the "Unigs"

L e . . -

cofﬂ&ﬁ, meaniﬁg that it is 4, rather than AOI(CGﬁQ 9plumn)
- ~ or 400 (hundreds columa) or 4000 xthbuéahdé.édluMn)l '?he o
keyword FORMAT 18 marked in the keywoéd block in the lower.
left-hand cyxnar of the card. The rest of the stateﬁevf

{s marked in columns 1-11 of the card: "(" in column 1, ‘

-"1".in column 2, "H" in’column 3, etc.

ﬁ“_ ASSESSMENT TASK: You are to mark a simple Fortram program on OMR
\ lcards and run 1t oﬁ tha’computer. The prﬂgram
N | and directions are given in the UNIT #1 AGTIVITIES
‘TABLE, APPENDIX IX. When you finish.;his task,
\, take yoqrﬂérogram dedk-gnd thé printed outpu£ pro-
” duced b} your program deck to your instructor for
: .. @ . _ .

avaluation. You will pot be allowed any errors on

pd~output. Don't worry about this seem-

¥ requirement; you can meet it. L=
@ ’

-

WHAT NEXT? You ﬁay proceed with either UNIT'#2 or UNIT #3, or both,

R 2 ol T T A—— D el IS T s T PRI eaaa = Apaaa P LT R e s

Pe

' - _° _UNIT #2 (COMSC)

TITLE: Flowcharts R .
LRI '}
1 Y i . e

© TAITONALE: A flovchart (alsd spelled s tvo vords, flow chart) fo
a plan by which a paréicular problem is torbe solved.
We stress the use of é flowchart'to deségiﬁa a plan
for organizing a camputer based algorithm, or proce4

dure for solving‘a problem, because for oét_useful

algorithms there afegmany différent ways-to accomplish

®
<«

the necessary cowputations.” A flowchart pins down one
of éhesé'many possibilities. A flo@bhart'gives us a
“ h : . record of what we had.p}anneﬁ to do.’ ﬁéfbrg we'decide
to yiela to the temptation té make a chaﬂée in the'solu;
t'ion procedure, we will be able to make a cqmpérison éf
.)the proposed modf?ication with-ihé original. In some
cases a change’%illlbe desifable, in other caéeq a |
N cataatroph@f By spending more time in thg pianning _\\
stages, oné’usually reduces the debugglpg time and the
<\; . overall.praject‘ﬁima.

OBJECTIVE: ®hen you finish this unit, you will‘be able to consgtruct’

,}'/

! . & plan or procedure for solving problems of a general ° ‘

type, using hoth a hoxed‘ftbwchgrt and ‘a line by line

.0
. : 2

| flowéhartf
' PREREQUISITES: UNIT #1, if required. S S e

2.1 ' 1

P

ACTIVITLIES: We'll begin with a fajrly detalled discussion of flow

4
4 o o ' charta, and then you can try your hand at constructing

wml
e

A. What 1s a flowchart? A

* The concept of a flowchart is completely ’

° . N

. . - . y Loyl .
- o . - geéneral. A flowchart is edmply a step by step
- o z . o 'planjbr procedure, usually.éiﬁqn in some graphic

form,. for accomplishing a goal or set of goals.

A "treassure hunt" map is a flowchart. A game

board like the one used in Monopoly or Agérava—

:

tion 18 a type of flowchart. A set of directions

for assemblying a fnioddl car or wirplane is a flow-

chart. Even the procedure that you follow ;n-yOur

- *

- early morning getting .up ‘routine is a floychart,

v

though you probably don't have a copy of it fh‘a

graphic form.

b

Do you get the idea? Any mﬁltiatep procedure
can readily bé generated from a flowchart, whether
1t be tréﬁeling from place ‘A to pihte B (the flow-
chart migpt.be a map), writing a paper for an Eng

1ish course (the flowchart might be called an out-

L%

v ' line in thiiékaeg), carrying out a laboratory ex~

/ , . periment (called a procedure) or writing a computer

'y

. - IR program.

' The level of detafl required in a flowchart
:.“*] ') .

varies with the situation and procedure being flow-

L]
“ .
M ke

: | - Yoy 2N

. - . _ Y
. \ . : .
Q : b . ¢

gome ypurself. - . - ' s

b e SRS, TR ST A T T b e EEEONTTR, DY e 1 e e - TR

ot -!,'3‘_

T e T T, T WA S SR T TRy L e At s e e R, (oSS

Kt - '
charted. In some cases, it may be necessary to - . //!

N . L]

present every step in deﬁail; in other cases, .
many steps may be summarized in a single line
T o ' : v -

or statemént.

Now that you have a gederal notion of flow-

charts, let's gd on to gsome specifics of flowchart-

ing as used in a glwple example. . _ . .

.5

o~

B. Two typas of flowcharts., ‘v .-
Although many notations éiist for flowchart-
ing,‘oﬂT& two will be used here. One method con-)

gists of placing the steps in various kinds of

1

boxes; tle: o her consists of u line by 1ine f⪯
sentation. Tye basic reason for using a flowchar€>

. 18 to indicate the possible alternatives consider- ~
| . .
ed by the solution procedure and the conditions,.

]

~under which these alternatives are pursued.
First, consi@ér a rather trivial, but pracﬁi—
*cal example -- thé proeﬁdure for putting on your
shoes and socks (assuming, of course, that you do Nl
wear shoes and socka). Examine Figure 2.1 where
two flowcharts are given which describe a proce~ .

dure for shoelng your feet,

-

aterpret the "flow"

\

You can probably read and

of the procedure without any trouble., You'll learn

~ about the meanings of the symbols later, If you

,.A‘?!a.%“ .
are sure that you'understand how to read the two

flowcharts and you understand what the-procedure

- - N . 2 ey

\ ¢ >
’ K . Lo
: N e -
' ' . - Start j) '
-) & \d .’ . ® ‘f. -
" ’ .) " e
C L e ‘Find shoaes.- - Begin where afrow comes into bhox on 1ine by - lide flow-" . Find shoeg B _
' . " chart or at "Start" on boxed flowchart. Find shoes. . - : : ' S
No ’ R . ’ ' : e . B N
- 2% - Right ones? 1If they aren't the rlght ones, keep looking until y0u No - Right ™
: b find the right ones. . : : oneg?
. Yes Yes .
3 Socks on? (When you 've found the.right ones, check your sodks. _ ‘
A 'If they're on, then put your shoes on.- Socks Yes
. on? ! - h.
LI . 3} No
. b Find socks. .= If your socks aren't on, theg find them. ' Find socks |, |
. T :
' \ No . . c /
) P Right onﬁﬁ? If they aren't the right ones, keep looking until you -
- find the right dnes. ' - .
- \ ' ’ ’
; Yes . ' ’ ; _
6 Feet clean? “When you've found the right’ ones, check your feet. If ¢
o " ' ’ they re clean, put your socks on, then your shoes.
"7 Wash and dry feet. If they're not clean, wash and dry -your feet. Wash and dry feet.
8 Put, socks on. - ot Put your socks on. ‘ - ' Put_socks on |
9 L* ‘Put shoes on. * [~# . Put'your shoes on. S R fut shoes on
a - Stop when drrow goes out of the box on tha line by line (ij étop ':>
flowthart or with "Stop" onkthe boxed flowchart. A ¢)‘3
- - L
Figure 2,1 ~A line by line flowchart (left) and a boxed flewchart (right) describing . .

LN .

& procedure (center) for putting on shoes and socks.

) 4 2.5
» ‘ IS
. {)
<3 _ . !
. . is for showi{g-ggur feet as described by the flow- -
/o L -~ : ch%égg, then progqeg with Activity.C. . \
. A 3
€. - A numeric example.
' o " Let's take an example more nearly related to
computer programming ~- finding the sum and average

. . ‘ ¢

? - : of N values, Y ,°Y,, Yi? TR s
. A -~ - / R

The sum 1s defined by

‘ "‘“WSUM\<\?l'+'Y2 t ¥+ Yy)
and the average-is defined by

- -AVE = SUM : N. .

~ .\ -~

A procedure for performing these calculations 18

-

. described by the flowcharts in Figure 2.2 along
with an explanation of the operations represent- s

ed by the flowcharts. After you have examined
. : .
the flowcharts, then we'll discuss ¢ach one in

greater detail.

. | © D.- Discussion of the lime by line flowchart. \
. & ' K . :
’ ’ In the Yline by line" flowchart, the flow of

computaﬁion is from one line to the next, unless

L3

a branch uccursz which is indicated by an arcow
__amah&ting from the line. An unconditional branch

19'%ndicaied by an arrow without conditiona% indi-

o cators. A conditional branch is indicated by an
. ' }
arrow or arrows with conditional indicators, such

/&’ 34 : : o

1 ¥ Read N,Y .o YN :
- -‘\3) \ -
- § -\f‘a
2 SUM « 3
3 K+ 0 \>\“\
Awd "rb K:N T
N
2 K « K+1 .
6 - suM <« SUM + g
7 AVE « SUM + N ¢
N .
8 : Write SUM,AVE - —
&
L.,,. - *

Figure 2.2 Line by line.(left) and boxed (right)
a procedure {center) for calculating tha average o

-

"+ Obtain the numbers that will be used. \in_phe

B R g T TP

LI R T S s e S g e e .,s.-.-—-...ru_u— T R
\ o
. . : .
. e
. ot .

computations. . T

*

Set the summer to zero.
This 18- analogous to clearing the dials on a desk -
{calculator, resetting them to zeros. - .

A counter K is set. so that the N~Values of Y can be
added one aqu time.

K is compared to N.

is next.
When K#N, 'then the counter fs incremented,

-

\ v

and the next value of Y is added, after which the
counter is checked again.
of the adding operation is continued
looping. - o, N

i
i

s

When the answer to the question K2N? is &es, then .
the average 1s calculated.

°

P

The results of the calculationSrar% recorded for later

use, and that' s .all there is to do!

LY

(« ﬁéans "is repléced by")

If K2N, then 5;1 the values of.’
Y have been added, and the calculation of the ave#eii

As long as K#N, repetition
_this is called®

v

lowéharts describing
a set of N numbers.

,,_,_n_ NI T _«~LJ;|!D!JFFM

\.')

v

g gt&rt‘\) ., 3
’ . Read N o
_ Yl YN -

l SUM < 0. .

Yes

r‘b -

? , /-: —

#

(C

Mevcon bt ara om0 s era.

80X TYPE

a8 =, P, <, S, >, 2, emanating from a statement

of tHe form

expressionl : expression?
. . d

At line % the statement which follows the gtate-
_ : A ‘

Y
ment
. . L

as long as K < N 18 on line 5, When K 2 N, the
statement at line 7 follows the ome at line 4.
Entry to the routine 18 indicated by the unattach-
ed arrow at line 1; efit from the routine is indi-
cateﬂ by the arrow at iine 8.
’Q}spusaion~of boxed flowchart.
In the boxed'typeaflowchait, each statement

or idea 18 placed in one of six typeé of boxﬁs.
The shape of' the box identifies’a sﬁe;ific'func~

tion that is to be performed. Box types and their
g

functiona_follow."A' ~
) FUNCTION
" initiate or terminate a program _
' segment or algorithm

B .
T
. 7,
»

execute a process or perform a’
calculation

27 -

M

N A e A A T TS R TET M ARSI e e - s | v ST E R s sne

’ 2.3 \ L .

|
A . N .
BOX TYRE FUNCTION
T 1ﬂitiafize
e " teat e
perform loop process .
-/ increment ¥
.)
- ™ L 3
a F A ¢
- / : B
- ' ' - perform input or output
I
N
_ ’ ‘ / make a decision
¥ / -
(f*t> . connect to another sequence
& -
The.sequence of steps, orkflow, in the flow-
AR - . chart is indicated by arrows which connect boxes.
.) “ Unlabeled arrows are called unconditional branches.
. " . .
I . Arrows with labels designate conditional branches,
allowing the floW to proceed along alternate path~
Py ' . .
ways, thegconditions being stated by the labels
. ») - A} *
. on the arrows.

Now, let's take each block of the boxed flow-

" chart separately.

]
¢

Obviously, this tells you where to start in che

i st |
: <: _,;?fiﬂn;:> flowchart. ‘

|

. £
* It's also obvious that this box tells you
- & ; where to stop or terminate the procedure.
(: Stop —T>/)
e e This box must be at the logical end of the

flow through the flowchart.

This box indicates that we want the computey
to get the value of N and all the Y's from.
some device which cam supply the computer with

Information or data. Our concern at this time

18 not how this is accomplished by what kind

of device; rather the general notion of putting
: : 3

Information into the system from some external
source is the main_concérn. (This is analogous
to a person's putting data into a calculator

' through the keyboard,'thg)peraon himaelf-being

the external source.)

Similarly, thig block instructs the‘computer

to write the results on some external output

device. As in the case of the read box, the

Write

main confern now is not how this is done; just
SUM, AVE

the general notion that it is done is important.

(This is analogous to the printing of results

on paper tape by a desk galculator or cash reg-

F - dster.)
y --¢ A1l of these boxes represent some process,
5 .
. . .
S + 0 cdncluding calculations in two cases. The

29

S
S
N
N
"

R

SUMeSUM+HY ¢]
_ —
.

AVE*SUM:N:]

—

L

0

e a— .L- ——————

SUMeSUMHY

o oo e et -

K
[~ K > N? “"“1
. K+ K+l

first box says, "Rep{nce what is iﬁ-SUﬂ By
zero." The second box says, "Replace SUM
with the current value oflSUM added to YK." ®
The, third box says, "Replaca-AVE_with SUM

divided by N." s

~ . ' #
This box sets up and controls a loop process.
The summing box 1s to be repeated N times,
The counter for the loop 1s given an initial
value of zero. The next statémant-in saquence
s K = N? As long as the answer is '"no,"
the.next statement in sequence, K + K+l; is
éxeguggd, followeé by the summing process.
Then the value of K i8 compared to N again,
and the .process is repeated as long as K is
not =2 N. But, when K is 2 N, then the loop-
ing will be terminated and the next box in
sequence willvbe ekecuted -~ in this case,
AVE +« SUM + N,

k
Notice that the loop process box hagﬁ
more than one arrow coming out of it; one,
the dne labeled "yes," is a conditional

branch. Notice also that the box eontains

three distidct steps: initlalizing K, test=

Ing K against N,‘and incrementing K,

The looplpgocess could also be represented

by the symbols shown on the next page with

K + K+1

.‘l—.j
.
-

the three steps =~ initializing, testing,
and incrementing -- shOWngeparately. Here
the decision box is used.. Like the loop
process box, the d@ciéion box has more ghan

one exit from the box. Two conditional

branches occur in this case, one labeled

yes” and one labeled "no." Sequences which o

sat an initial value and test and increment
the value occur so frequently, however, that

they are usually combined into one loop proc—

ess block. Generakkibzﬁb should expect to
‘use the loop process béx for initialize-test-

increment sequences.

Ly

Some additional examples of boxed floweharts.

i

Figure 2.3
Decision Box

% The box shown "in Rigure 2.3 may be ugad'
to indicate branching alternatives such as
(1) 1less ;han zexo (<0), equal to gero
(=0), greater than zero (>0) (three
way branch) |

(£1) 1less than or eﬁual to zero (s0),

!
31 . N

2.11

[

[

e = - o 2 R s — - - —

. *
2.12 - : >
AN
greater than zero (>0) (two way
, branch)
»
(111) etc.

¢ .
'/\
ff
Figure 2¢4
Decision Box Examples
¢
In Figure 2.4 examples of two way
- branches and three way branches are given.
N If

. AREA - 40.23 < 0

[‘/ . .

the next box in sequence is \the one indicateq

by . Note that

I O Rt B e T e e e e e e o]

and

e~ 40.23 < 0

[< 40.23

are two different ways to state that the

quantity called AREA is less than 40.23.

LY

The other conditions require sdditional

~

" tests before the next box in sequence is

deternined. These cholces are 1llustrated

in Table 2.1.

Branching Alternatives for Figyre 2.4

~

w»

¥

g)
FIRST CONDITION SECOND CONDITION NEXT BOX *
AREA - 40.23 < 0 b .7

%
< .
AREA ~ 40.23 > 0 - C =~ 2MR = 0 3
AREA - 40,23 > 0 C~ 2MR # 0 A
AREA - 40.23 = 0 L<O . -5
, ' e
AREA « 40.23 = 0 L 0 6
-« . F-3
‘ ‘Table 2.1 o

N

2.14

Figure 2.5 o
Alternate Repres9ntations of Two Way Branches

-

Figure‘Z.S 1llustrates different ways to
rapresant the same alternatives.
For twod way branches, it is possible to

state the question in terms of logical rela-
tions rather than arithmetic relations. Figure
2.6 illustrates this slightdy different nota-

tion.

‘Figura 2.6 |)
Logical Representation of Two Way Branches

TFigure 2.7
A Branching Maze

—

. .J
Fill in Table 2.2 to correspond to the branching
alternatives for Figure 2.7, -

«

o
&

A

¢ Y ST R e s TS AT T e T 1m0

current sgenester. -

36

5

2,16
FIRST SECOND THIRD NEXT
CONDITION CONDITTION CONDITION BOX
l K
. .
9 | | ‘
l\
° ‘ \
I
‘i
Table 2.2
Branching Alternatives for Figure 2.7
‘e
J/l/ '
G. Your fextbook may\have additional information
that is helpful. Do Aetivity 1 in the UNIT #2
ACTIVITIES TABLE.
SELF ASSESSMENT: ..
A. Construct a line by 1ine flowchart f0£ Figure 2.4,
B. Construct a line by line flowcBart for Figure 2.7,
. C. Construet a boxed flowchart contalning of at least three
» decisions describing how you spend Mondays during the
) -) '

’

D,

Construct a line by line flowchart containing at least

three decisions describing your enyollm@nt in the Univer-

sity this sepester.

PA ':
Construct a boxed flowchart containing at least two
decisions describing how to change a flat tire -- or

a?w to get help, 1f you donlt know how to change it.

operations as pdesible to determine which of eight objects,

was of different weight if seven of the eight had identi~"

cal waights and the eighth was of differen{ weight, using

only a beam balance. Your solution must glso determine
whether the object was heavier or lighter than the other
If you are enrblled in the "PIPI Package," then construct

a line by line flowchart to describe the techniques of

~ preparing a report as described in Communications Unit 5.

L]

S5ee your {nstructor and show him some of your flowcharts. He

will help you with any errors thai have code up or with anything

-~

‘that you don't understand.

ASSESSMENT TASKS: See your instructor. You will need pencil and

-

paper, and you may use youf books. You will be.

) ;kquired'to write both boxed and line by line

flowcharts.

ﬁHAT NEXT? You may proceed with UNIT #5Iif you have done UNITS #3

and #4 already. If you haven't done 3 and 4, then go

‘f ')

- _ : 53;7

- COQS_F?‘};‘C,_C__F line by line flowchart consisting of as few .. .

2,18

~...\q—-—m = = s Crr—. == L i S S R

to UNIT #3. 1f you have done 3, but not 4, then do

oNIT f4. . -
- q . E B

’

~
-
- -]
. [}
-
-
.
. ~
¢
.
LS
’
2
-
-
L4
EY
. .
¥
.
.
4
-
L]
!
3
.
_"/

2

“=F . UNIT #3 (COMSC)

TITLE: Variables, anstants, Expressions and Assignment
Statements

"RATIONALE:

OBJECTIVE:

Fortran is a procedure—oriented language developed

PR U J— i e

specifically to handle algebralc expressions. The

mdst basic elements of algebra and Tortran are vari-~

ables and constants and the expressions constructed

]

\
from them by connecting them with arithmetic operators.
: L3
In order to program in Fortran you must have a thor-
ough grasp of these concepts in both plgebra and For-

tran. Your grasp of the algebra part ig assﬁmed; the °

« Fortrdn part is contained -in this unit,

When you complete thig unit, you will be able to
(1) ihentify and construct integer and feal

constants and variables;

(¥i) identify,*éonstruct, and evaluate Fortran

4

expressons; ' <
{

(141) identify and construct assignment statéments,

and describe the results when they are exe-

“

cuted.

PREREQUISITES: UNIT #1, if required, and a working knowledge of.

elementary algebra.

n

39

" 3.1

LAV

ACTIVITIES:

1.

SELF EVALUATION FOR PART 1: |

o . Part 1.

‘whole number. If we attempt to piace the value 3.4

?

Fortran variable$ and conﬁtﬂnKQA,x'".

The one most noticeable diffarenca bmtw@én algebra and;gj

arithmetic is the use in algabrg of alphabatiq 1acterg §f'

™ - A

to represent umknown valuea. As in the case of algebrﬁ, "

this is.a particularly important characteriStlc of Fbra:.
8

[N ©

- tran. Just as in algebra we solve or., rpdqce @xpresalons

in which unknowns (variables) appear,,?o we Vill mﬂnipuﬁ:w_m

w

late expressions in Fortran, even though at the tima,of;;
writing the program the values of the variables are un-

lknown. : 8

Refer to UNIT #3, ACTIVITIES TABLE,. Activity 1. \
In Fortran, the mode or.type & the number being used
is designated through the initial letter in the vari-

able name. You must be very eareful to insure that

the name you use for a variable cdtrectly reflects the
: »

use that will be made of the variable. One of the most

»
Pl

common errors made by new and old programmers alike is

to use an integer name for a value that is not a vhole

number, or to use & Yeal nate for a value that is a

¢

in the location labeled IX, IX.would contain only the

value 3. The .4 would be dropped and lost.

;

The answers to these exercises axe given on the page -.

following them. -

1.

Identify the following as variable names’ ox constants

. a0

i
e

. 3.3
L - &
and as real or integer if they are valid. If they are
invalid, state why they are invalid.
~ a. AKTION
o b. X-RAY
: | N
Cc. INTEREST *
d: 5.34 .
e. SUM3 ’
o £..20,00000 . @ s
g. KING - !
. he 2419
- \ . Y
1. 5.78k6 . *
j. 25 —_
'. ¢ k. DISTANGE
T N - -
\ .*.._s. e by ! ‘
° S 1. 1% * : .
= “ N 1 :
m. 10,365. ' . ‘ -
n, RATE #
o. C
. p. K8J3
. | . gq. STOP"
2. Take the numbergé qnd write it aé an integer conséant,
-a real constant;,' and a real constant in exponential form.
o P S - 3. Take the number 25.6 and.write it as an integer constant,
o) , - a real constant, and a real constant in axponential form.
4. “Write five'different integer variable names.,
. 3. Write five different real variable names.
- W , -
..- v . B s
Qo o, C. . l ’

Ao

b. Invalid:

"~ 'g. Valid integer variable ™ . 7

Answers: .

a. Valid real variable
spacial chdracter -

c¢. Invalid: more than six characters
d. Valid real constant
e. Valid real variable
f. Invalid: imbedded comma
h. Invalid: does not begin with alphabetic character

& .
i. Valid real (exponential) constant

“j. Valid integer constant

k. Invalid: to more than six characters

1. Invalid:

special character %' Lo
m. Invalid: imbedded comma |

n. Valid real Qariable

o. Valid real variable

p. . Valid integer variable ‘ .
q. Valid -real variable - e

-

&

Integer, 256; real, 256. or 256.0; real exponential,

256.E0 or 256.0EO or 2.56E2 and other variations.

Integer, 25 (the .6. is truncated); real, 25.6; realf

exponential, 25.6E0 or 2.356El 6r 256.E~1 and other varia-

2 .

tions. . 4

3
-

e

. - .
Any combinations of up to and including six alphabetic

'épd numeric characters, beginning with one of the letters

I-N, is acceptable.

LS N

Note:

F -’LT;?'?“'“

Any combination of up to and including six alphabetic
and numeric characters, beginning with one of the letters

A-H and 0~2Z, is accaptab%?.

. B

IBM 1130 Fortran allows a ?ﬁiimum of only five characters

in variable names.

-

¥ Y ® .

You must be sure that you can racognize the difference between
Integer and real constants and variables names; proceaed with

Part II when you feel that you are ready. C%ﬁ

L

Part 1I. Fortran Expressions.

1. Refer to UNIT #3 ACTIVITIES TABLE, Activity 2.

2. There are several very lmportant points in this
section which need emphasizing. Reread the reference
cited in the ACTIVITIES TABLE with spaclal emphasis on

<

T ' '
a. the use of parentheses in expressions;

=

be the hierarchy of operations in an expression;

c. valid typ}a of exponentiation;

d. the mode or type of the value of an expression;

e. probleﬁs of accuracy and précision; r
f. an& integer ;ivision.
3+~ The exponentiation oﬁe;g;or requires more discussion.
Either a.raal or an integer quantity may be raised to
an‘;;N gér powére For exaﬁpla, it 18 correct to use
ARSK

or

JERK

3.5

AN

-

3.6

B e TN
SO — - e —r— - i

N .
When an integer axponent is usad, the exponentiation

is actually performed by succeasive multiplicationa.

For example, ARRG | evaluated by the computer as

A*AYAYA. Thus, A may be positive, negative, or zero.
’

Furthermore, K may be negative or zero (1f A40.0).

[f K has a value of -4, for example, then AWK {g

avaluated as

or

1.0 :
A*A*§*A . \ _
In summary, there are no restrictions on A o;h;T>Q§

the case A**K, that is, for a real quantity raised
to an integer power (except that A cann;t be zero
Q&En K<0).

For the case d**K, there is one reatrictién,
however. Since by definition no-fractional parts are
avallable .with integars, K cannot be negative. In
other words, J**K cannot be evaluated since.lfﬁ con-

A

tains no fractional part. (Also J cannot be gero

[

when K is zero.) s
. Real exponents may be used. TFor example,
ARKE ' ’
'

o
<

is a valid-expression. When real exponents are used,

the expression is avaluated with logarithmazi

14 S

Ha

e e T e TR e e Rt el

.‘“

.antilog(e -logh)
or in Fortran, ¥aooe

EXP (E*ALOG(A))
Since the logarlithm function {8 undefined for As0.0, A

must always be greatar than zero.

The expression
»
JRkE
is allowed with some compilers. When it i{s allowed, J is

converted to a real quantity before the expression is

evaluated; the result {s real, not integer.

The results and restrictions of the types of expo-
nentigtion are summarized in Table 3.1. Certain sugges-
tions gecome appafent upon examination of the concepts
in the table.

b(ij Usually, if the po&e? to which-you are raising

~ a number is a small integer, it may be bettgr

glmply to multiply it out rather than to use
the exponentlation operator. *For example,
x*#z is bettar-written X*X.

»211). Since~tha use of an integer power is less
restrictive, use an integer power whenever
possible, unless the power is large, in which
case the execution time can become excessive.

(111) When the power {is large, 1t is bétger to use

. a real exponent for ahpfter execution time,
provided, of céursa, thatinhe number being

-~

ralsed to the power is greater than zero.

. . >

o . .. 3 {gf;

3.7

l\\/ =

L

R BT e e e

3.8

. %
&
: -
»”
'y
- 'I\ype of E\}aluat ion
@xponentiation Reatrictions procedure Result
. . .
’ JHRK K20 NE NI X Integer
AWK Generally none- | A%A%,, %A Real
most general
case¥
JRAE Not allowed XJ + J Real
. with. some com- EXP (B¥ALOG(X.J))
pllers; if or
v allowed, J>0 antilog (8dogXJ)
. EXP(E*ALOG(A)) | Real .
ANXE A20.0 or
antilog(edlogA)

A

* Thafe are additibnal rastfictions when J or A is gero. The

following cases are undefined:
. O¥ng , Ks0

0.0%K, k<0 -

exponentiation.

Results and re&tricfions
J and K represent i
A, E, and XJ represent real

quantities.

N,

on various typaes of
nteger quantities;

“

T - — T ST o

3.9
. ¥
4, The hierarchy of operations can be summarized as follows:
(1) Parenthesas, ilnnermost firat,‘from left to right.
(i) _Fuoctions from left to right.
“ L
(i1i) Exponentiation froem left to right.
(iv) Multiplication and division from left to right.
(v) Addition and subtraction from left to right.
SELF EVALUATION FOR PART Il: . . . e
7 Answers are on the page following the exercilses.
1. 1ldentify the following expressions as real or inte-
& ger if they are valid. 1If they are ‘invalid, state
why they are invalid.
’ a. J*2.04K .
\
b, A%%4+2, 0%B-C
¢, 2.0(A+B)<C
d. JRRT/KR*N @
' e. A/-BHC .
2. Construct Fortran expressions for the following.
" ath a+b ' (r) t-1
Qe —— Ce "“""'("i‘ e. p -
chd o4 8
o .
/
L’l'b a C'd
. de = + S
b c+10 b e-f-g

N
~F

3.0

Angwers.

: : 1. a.

Invalid (generally) - mixed mode
Valid, real

Invalid - miesing operator after 2.0
Valid, integer

Invalid ~ two operators (/ and -) together

(A*B)/ (C+10.0) or A*B/(C+10.0)
(A+B)/(C+D/E)

A/B+{C*D){(E*F*G) or A/B+CH¥D/ (EXF*G)
(p*(a/é))*w(r—l.b) or (P*R}s)**(Tml.O)

1f P¥R/S is negative, an error will result since the

/ b3

o exponent is real and the expression {s évaluated by

Part III. Assignment Statements.

1.

2.

- .

logarithms. This problem is overcome by writing the
expression with an integer exponent.

(P*R/S) ** (1T~1)

»

Refer to UNIT #3 ACTIVITIES TABLE, Activity 3.

In Fortran aasignment statements, the'"eduals" symbol
does not -actually meaﬁ eéuai;ty. lRather i; should be
thought of as a storage operator or égxeplacement op-
ervator. The value of khe axpreasioﬁ;on the right of

v

Mat' g gtored in‘the{storage location identified on
the left of "="; or sayipg 1t another way, the value- \
on the left of "=" {s replaced by the value of the ex-

pression on the x&ghtz. "!8

¥ bty g

e

) | - E 3.11
3. Notice that the value of an integer expression on

the right can be stored as a real value on the leff,

‘and vice versa. FYFor example, J=2.6 gives an integer

Qaiue of 2 stored in J, (The fractional part is

‘f.
truncated.) A=2 glvaes a real value of 2.0 stored

.

« In Ao

SELF EVALUATION FOR PART I{L.. | /
Ansvers are on the page following the exercises.
1. Ildentify the fol{owlng asslignment statements as
vglid or invalid.
a. J¥K=1
b. A=2.0%B | .
¢. -BaC/D+E ’
d. X=SIN(Y)
2. Constrﬁct Fortran assiénment statements for the

following.

a. x = cos(y) + x-sin(z) ' -

Y G ar YA
z&

c. 1 = (2.0-%-:»;2)1/2

3. State the humeric value.of J that will be transferred
to memory by.the following arithmetilc assignment atatg;
" ments. o
a J = 5%5/7
‘U. J = 5/7%3 N
‘ - t .

h

[|

sy S B SRR

J.12

ments.

a- X Sws/7 4
b, X m 7/5%5 7 e
d. K = 4x3Exp . g

LN

c. J = 2.0/3.0 + 2.0/3.0
d. J = 5%7/5

e. J = 7/5%5

‘Stdte. the numeric valu@ of X that will be transferred

to. memoyy by the following arithmetic asgsignment state-

Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

2

X = 3.0%.002.0

X = 4.0/2.0%5,0

X = 5.0/3.0+3.0/3.045.0/3.0

%

p [N R TRty

3.13
Anawers. ,
1. a. Invalid - single name must appear on laft‘
. b. Valid - .
c. Invalid - -B Incorrect
d. Valid .
- 2.)a. X = COS(Y) + X*SIN(Z)
T | be A m (=({~XFY+27.0)/2%82))%%4 . . o e

or A = (= (=X4Y+27.Q) [Z¥X2) k%4 .

e, R o= (2.04X%%2)%%0.5 or R = SQRT(2.0+X*#2)

N

¥ 3. a. 3
b. O
Ce 1
\ L)
d. 7
e. 5 - '
‘ﬂ. q
4. a. %.0 * -
b. 5.0
. 5 \
c. 36.0 ‘ ,@
d. 10.0 . |
. e. 10.0 s -

f. Approximately 4.33333 or 13/3

5. Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

{

AT - B - R '
3 . 1{‘ . - ; I
/ !
: \ :
—) ABSESSMENT TASK: Please see your instructor. You will bg required
to idantify and construct corr@ctly writtén constants,
.= v \
variable names, expressions, and assignment state- -
mentas. You will also ba_reguir@d to evaluate Fortran
- expressions and to describe the results &hen»Forgran
assignment ataqdﬁent are executed.
) WHAT NEXT? ~You may go ahead with UNIT #2 ox with UNIT #4. B
¢ g
.]
! \ NS
/ . ‘ g
» J’& N N N
N w
» t .
{ ‘
92
v ~
n\) o Al Y
.7_ - \ , :)
...4 R S WP - \'—-:.'-"""“."é' 4 "r~'r- KLY SO . sl 'i‘ - '."»7 - .o o o

UNIT #4 (COMSC)

TITLE: STATEMENT .NUMBERS AND.UNCONDITIONAL.BRANCHES o

f RATIONALE: One of the important characteristics of the modern
computer is its abilipy to execute repeatedly a series

/ ‘ of instructions automatically. This unit is the first

»

_of several that will help you learn to utllize this

-

+

abilicy.

~
7

OBJECTIVES: When you complete this unit} you will be able to

construct and identify statement numbexrs .and uncon-

' ditional branches that will utilize the statement _

-~

’

A

numbers. N

PREREQUISITES : UNIT. #3 (COMSC).

’ i) . . ‘ﬁ
ACTIVITIES: 1// - . . : '

1. 'Normally program steps are exécﬁted sequentially.id the

) same order in which they appaar““-lq Fi&ﬁre 4,1 the first

. L]

- . statement executed would put 5.0 in theqstorage location
t - ‘ N .
named A. : R "
- \
. ,/. ’)

“.V. - ' ”\,
.‘\ A b .5’0 0 .o
B = A+ 1.0 . vt

\ " C=B8-+ A% 3.0 _ 8-

' Figure 4,1, A sample program segment,
11lustrating the normal order of execution from top to boftom.

- 53\.\.

N

ST AR e PR SN AN TR TSRS SR b o

b2

S by it

3

L

The next one executed would put a 6.0 in locagion B. Th

@

N
e

4
last one would put -21.0 in location C. Normally this order

of executlon from top to hottom is desirable, since usually

we do want the. Statements executed in the same order in

which they are written.

There are, however, important ex-

ceptions. Frequently we may want_to rapeat the execution

of some statements or group of statements. Without the

abili%y to raepeat the executlon of a sefige of program

8teps,

lbractical}

Por example, suppose we wa

14

the programs we write would be

e

%
too long to be

«

nt to compute the volume of

25 boxes. The firat box*has dimensions of 1 unit, 4 units,

and 5 units..

“

unit lérger than the preceding box. For such a job we

Each succeeding box has dimensions each 1

9

might write the program shogn in Figure 4,2.

Y

<OTDEI<O

S
&

> <O

O
=

O
L

8 B &% ¥ 3 8

-

1.0)
4.0

5.0 .
m A% B % (Q .

2.0 \ \
5.0

6.0

w A% B % (C

3.0

6.0 .

7.0 ’ '

= A% B % (C -
atc.

T o

" Figura 4.2.

[A

v

poep

Sampie program segment for calculatiﬁg

the volume of 25 boxﬁzﬂﬁfth-dimenaion

s incremented by one each time.

. 5¢

‘o

This series would continue until we had computed the

volume of 25 boxeg. How many statements would we have
s
written? Notice that there are 4 statementsfor
the computation of VOL fqr each box. | ,
1f we take advantage of thejgterative‘gapability of a-

computer, we can write the'program ip a much shorter way,
f 3howﬁ'in Figure 4.3. The next to the last line ié nét a . i

valid Foétrah'—é'tateiﬁéﬁt';”"it' is a substitution for a Fortran

statement that wil? be covered later.,

#

e+t +ro00

a4 5 &8]

B R 2

OO O
%
(]

Wi

How>§0qﬁ>
=

Qo R D

i

=
= >

equal 26 stop

8
s

Ly

Figure 4.3. Shortened program segméht for calculating the
volume of 25 boxes with ‘dimensions incremented by one each time

]

There are some things in this serles that need explain-

ing, but one thing shoyld be clear. From a series of 100 . -

£ 1

. .) ¥
Statements, we hawve cut down to only 9 statements.
Take a look at the .fourth statement in Figure 4.3.
*There 1s a number that appears in front of the statement.

This mumber is referred to as a statement number. The

soia-purpose of a statement number is to identify the

L]

statement for later reference. We give it a unique number a

55

g U OU J— - L. Y

- e = T T cnr 2 = S [S - . s, P
ey TR 8 D T - 4

// ’ 8o that we can refer to that statement from other parts
/ | &
of the program. (Note that this is not a sequence number.

Statement number 5 is not necessarily the fifth statement .

13

If you have a hangup for numbers, you might name three
children "fen,” "Two,h and "Iwenty." These are valid
names and do not necessarfly imply that. you have twenty

children, nor are they necessarily named in numerical

.Y

- ordary)

+

The statement numbers in Figure 4.4 are perfectly

Valid.
\‘é 77|, A =B
105[| A =B+ 15.0 + &k
% 6 B=RB%A
\\999 B=DB+ 1B

~—

|

Figufe 4.4, Exagples of statements -with statemeﬂt_numbers.

L4

L4

. _
Statement numbers must be‘pogitive integers from 1
to 99999, though the maximum number allowed may be less

for some computer systems.

2, Refer to UNIT #4 ACTIVITIES TABLE, Activity 1. An example

%

of a Fortran coding ?5rm, which is available in the book~
store, is shown on page 4.5. You are ancouraged to use
coding forms for writing programs to be punqhed on com=-
puter cards, which you'll take up in UNIT #5, sinca the
format of the coding form is the sama as the format of the
Fortran compu%ef card.,

Notice once more that statement numbers are placed

-

anywhere in columns 1«5 and Fortran statements are placed

o

S

JECR S

AL LRl mnepse

PR L

L

A EVA WUNIVERS v

s T

«
scnmem——.

FAGE ... OF

PROGRAMMERS HAME

L } _| eropLem nympes
/

“
i
5
&

SECTION NO,

N

R W

L}

EROBLEM TITLE

o
D
o
g {2 |- m
£ 1.
& E L} §
cu n -+ —— - q
B 1 -t e ==t -1 j
L -)
@ LE i
o * B .t
> v +- - —- T - -
n 4 W .
£ [m
I i] i
12 4 T
i o
¥ 1
E m T —
-
2 | 7
3
[.)
S P
| q o
L @ . ’ B 4
] o
E T
3 T
0 +
2 '
2 i
7 t
o .
e P t
2 L]
& ! —
2 1
2 R i r :
? :) i P { 3
% ; i —
= -
w e i]
; ;
R K — ; —
- _ﬂ i | N H d
i i R
< HE e i
- 8 i i L
o hE R -
3 o : R
= te ; : 0
o "
< g . t : -
& = t - ; -
i ; i i : :]
R M ; 4 _ i
% 18 P ! | : :
® 1 o ' H } { H § :
” : . ;) ;
L T Y T Y PN
2 ~ . _~ N I,
& ! P 1 Loy T
5 : - ; R * j R
a “_ S Lo m T A A A
e S U RS P T -
- - e ———— e e = - - - - -4 4 s > A - - s
g o R Ty ~+n.w. R N
5 P Tt . T
2 S S S A S S S S I
et ¢ D Ry e SO RO S S T t
S B S O D N e - R
| - e - e IR i -1 - 0. - T T o .n - .@., e o e -
S : : L PR : + - , : : _
o | T T : : oty T r T ¥ S
= -+ pOR a -+ I..#'l ' J‘ + - H
o~ . . . , . £
mw —_ e ‘ - xS L_-lliLﬁ [- w —— q
: : 5 X . i
J— - - e e e pa R lﬂl - + ; - —— m W
o . B . N i &
- 4 - ‘_T [N A " S ‘Hlynl:f.ll - . . — H
2 O, A | —- :
~) ! : T i
+ - - + - -
m 1 ﬂ £ m
= : H
* ! B 2
t [
2 - [y) - A E
gy &u Co #
z] I i
e —~ T ;
< + g .
P —} —— W
2y b -
~ . 3
T) , ' _. .
- t B
.m i ; w1
.Q ” ..|1. -
Z . ;
© - 3 e

.

¥

4,6

hnywhare in columms 6-72.

The last statement in Figure 4.3 18 called an uwaconditional

————

branch. Up to this point, each statement has besen executed

» sequentially. This last statement, however, changes the

" orxder of execution. It tells the computer to execute next

4.

the statement identifled by statement number ™5" and continue

sequentially from that point. The next statement executed
=)
after statement number 5 is the statement *
3)

« A=A+ 1,0

In an unconditional GO TO statement, the 8o TO is always

. o
followed by an integer conatant which is the unique state-
ment number of the statement to which trénsfer is to take

place.

Refer to UNIT ﬁh ACTIVITIES TABLE, Activity 2.

SELF EVALUATION:

1.

Which of the following are legal statement numbers?

a. 13 d. 123456
b- QB *) Q. 2/3 .
c. 3456 £, 241

Write a statement that will cause a branch from the last

statement of the following routine to the second statement.

-

Add statement numbers-if necessary.

-

-
-

Vs e e i,

n.‘ /

3. Write a set of Fortran statements (a program segment) that

will count by fives. Set the counter to 4ero; use integers,
Then add flve to the counter, and go back to the statement
that adds five, etc. (Refer to UNIT #4 ACTIVITIES TABLE,

Activity 3, for help.)

Answers:

- »

"l. Legal statement numbers are a and c.- The number in d has

r

more than 5 digits. ‘"The ones contained in b, e, and

contain characters that are ot numerals.

A% N
wle) ;
T3] A=1.0 .. \\L
, 50 B= A+ 3.0 .
A= A+ A
He= 0.5 %A %% 32 -
GO TO 50
3. e
, Ne 0 o
10 N=N+S5
"GO TO. 10 .
r [}

~% .

ASSESSMENT TASK: Please see your ingéiuctot. You will be required
to identify valid statement ?umbers and to con-

struct one or more short program segments using

LY

unconditiqnal GO TO statements and'the material

in UNIT'#3. - \N :

| 61

4.8
WHAT NEXT? 1If you have completed UNIT #2, you are ready to
proceed with UNIT #5. 1If you have not done UNIT #2,
-
then do 1t, after which you may go to UNIT #5.
:
’
.l
\\/_"

e L

. UNIT #5 (COMSC)

TITLE: Preparing a Job for Running on the Computer

RATIONALE:

OBJECTIVE:

In the next unit, UNIT #6, you will be writing your
first Fortran program. Before you can rqp}y?gr.éyof_
gram on the computer, you must know abodthkaypunch
machines and punched cards; you must know how to run
jobs "on the computer; and yoﬁ néed to know how to
document a program.

%he first part of this unit deals with punched
cards. Since the punched card is still one of the
prime means of input to the gémputer, you need to
know how to punch'and interpret éomputer cardg. In
order to punch cards, you make use of a‘card punch
or keyptnch machine, which you will find out ho& to
use. |

The second part of the unit describes documenta-
tion of programs and.;hy it is Nmportant. ¢

The third part tells you how to run a job on the

coéputer. If you were required to' do UNIT #1, then

most of this procedu}e will be a review.

-

-

When you have completed this ﬁnit, you will be able
to demonstrate - -that you can punch computer cards and

interprat them, document and punch a Fortran program
\)

5.1

62

e

AT TR NS AT ety e e R 2 ——— = . PR - - e S A

3.2

« that is given to you, and run the program on the

&
computer.
PREREQUISITES: UNITS #2 and #4.
ACTIVITIES: 3 :
PART 1. Punching and interpreting computer cards.
A. "Do not fold, mutilate, or spindle.”" "The punched

me e - ‘hole will add itself to something else, subtract it-

self from something else, multiply itself by some-
thing else, divide itself by something else, list
iféalf, reproduce ltself, classify itself, select
itself, print itself on a card, produce an automatic
balance forward, file itgelf, post itself, cause a
total to bevprinted, coﬁpare itself to something élse,
reproduce and princlitsglf on the end of a card, cause
a form to feed to a predeta-ﬁiﬁéagpeait}on,'or to be
rejected automatically, or towspace the fdrm from one
position to another,"! : |
How can something that is nothing do all of this?

Simply by pwaching rectangular shaped holes into an

IBM card (punched card) as codes for letters and num-

bers, we can use the card as input to data processing
\ ‘ equipment which in turn performs these functions.
~ A standard IBM punched card measures 7 3/8 by

3 114 4nches, 18 0.007 inches thick, and is made of
e

-

‘Punched Cards, Donald A. C. McGill, McGraw-Hill Book
Company, page Qp.

63 , *

+

SET et ST W) e

was patented by Herman Hollerith, a statistician for

5.3

%

vy

14

apecial paper which withstands the effects of handling
by man and machine. A larger card punched with round
holes 15 used on Sperry Rand Corporation (UNIVAC) equip-

ment; however we will consider only the IBM card,

ment, avan by INIVAC since 1966. - - - - .

An example of an IBM computer card is shown in
Figure 5.1. Usually the upper corner is cut at a 60°
angle with the long edge of the card, although cards

will be found with uncut corners. The corner cut hag ¢

no effect on the operation of the computer and 13'0n1y

éo enable the oﬁeratog@to @ake a quick visual check
that all the cards are facing the same way and are
right-side up. Mixed corner cuts and mixed colgre
can be usad if.it is important to be-able to.distinguish
different card types visually.

The card is divided “into 80 colummns numbeéed 1
thru 80 from left to right, and into 12 rows numbered
12, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, from the top of

the card to the bottom.

The Hollerith code used for punched cards.

The code used in punching data into these cards

the Bureau of The Census. This code enabled the

Census of 1890 to be processed by automated equipment,

54

= P . * Ty
AT sy i L £ S b =T > Nl g .

Column 1 . , Column 80

12-edge

R

«

‘ >

Row 12 —» l'\4\s)n1m"nﬁnwmnumﬂgw-wumrmmwununnmunmwunp«vmuunmynuuh5wwwwﬁmuuuuwnumn‘1"1%ﬁmwn
Row 11 ——s- nESaanonatnEEnn, ‘i[i'ihillﬂ&l‘z"l.ié[f}l&[ﬁl’i@k’l@fﬂﬁﬁﬂ‘i@mﬁﬂﬂmﬁm&ﬂmﬂjIﬁlﬁlﬂ?ﬂdﬁt@l‘éhﬁiﬂiﬂﬁl’iili&]‘iﬂ?ﬂ
| 00000000000000000000000, . (¥R TSRV IV TS P A [D [TRToA®] -+ 0000000000000000060000080
l!llllIllllllll!lll!!ll!lll'lllllllllliflllllllllIlllllllllllllll!lllllllllllilll

~R0w 0 oot

22?3222?222222222222?222222???22222222223272?22?22222222222222222222??22?2222222
JJJJJJJJJJJ33333333333333333333313333333333333333}33333333333333333333333@333333
44444444444444#444

55
86665656685685856868SBbG856658865655886666858666658886666666666868f5688855566666
777777?1717777777777177177777{7777177777777777777777?7777777771777777 ! 111111
088888838888888388838888888888&88888888888888?88388888888888888888888888?8888 38

8999999993989995899 999899899999959999998998999999993999999998999§{ 3949
su NN
1LY}

INBENNINADRINBRDRNIN umnmnmuommmsummsommﬂmmamnmnsmus&mmu!on"’nmmmq wHge

T OKLAHOMA STATE URIVERSITY

&

-

9-adge

Figure 5.1. An example of an IBM computer card. The 80 columns are numbered by small numbers at
the top and at the bottom. The card also containa 12 rows, 10 of which are numbered 0-~9 and
two of which are not numbered on the card. Row 12 {s at the top of the card, and row 11 is
between row 12 and row 0. The top edge of the card is called the 12-edge, while the bottom
edge is called the 9-edge. s :

" ' L] . . il
. . - . . (S ES) L8

W

Anbalel

Dr. Hgllerith in 1903 left the Bureau of the Census
to found the Comput%ng Tabulating Recording Cowpany,
which later was the nucieua of ﬁhe Ihternational
Business Machiﬁ? Corporation.

An examﬁle of a punched computer card ia shown

in Figure 5!2. Careful examination of the card will

& reveal that the Hollerith Cod¢ uses a single punch in

LY

“rows 0 vhrough 9 to represent the digits 0 through 9,

raespectively. A punch in these rows is called a digit

punch, or a numeric punch. Alphabetic characters or

letters are represented by two punches in the same
column. One of these punches is ﬁp one of the rows
12, 11, or O and is called a zone punch, and the other
is a digit punéhlin one of the rows 1 thru 9. Note
that row 0 is called a zone punch for alphabatic .
gﬁaragtersvénd,is called a digit P““?b for numbers.
The codeS'for thé alphabatic and numeric characters
aré depicted in Table 5,1;

* “Note that the zone 0 digit 1 punch is not used
for‘the 1éti§r S as you might expect'but it‘is used
as the speclal character’/ or slash. § ig éone 0

LY

digie 2. '

There are also codes for special characters and/”
or punctuation marks. These consist of two digit
punches, a single zone punch, of a.zone punch and one

w’ .
or two digit punches. The apecial characters that

are used in Fortran IV are glven 1n'Tabla 3.

66 R

5.3

Lk ity 3. 2 . - St o L TN TR) Ll
SIREEE A e Ehteinti LS e E T T A ST e R s 1 ibdaca e W %= D : e Sz e . - g

*
’

r'
&
¢
3

9's

Numeric : ') Special - B _
jcharacters) . | * Alghabetic characters | | characters | — bt v
//f” 01123456789 . ARCDEF GHT JKLMNOPORSTUVHRY S T QLM , TN

12

SASE TSN mol!!l%\!l!w ARV BRI BN unmaNummwm;ls, umss!!mmosssmassmn ARSI

Zone punches

EHTWWTJHHHMﬂﬁﬂﬂﬂmmmmmﬂggﬂgmj{mmmmmmmn e |13 o
00000§00006000000000000 - IR I 01005000000000000000000
111111:1111111t:a111;111111lTlﬁnlrlllzllixtllllln111111111;11:11111:1:1:1111{}11
2222222;22222?2222222522222222:2222222!222
3330333383333233333933033333333033333330333393332333233333330M33333333303333333
A4a8004aRa00aaaaa0aadaRaetaataalanasaaaBaa800000800000la00aaas8a1a0adaetateadn
Numeric or digitJ ssssssassslssssss5555555]55555555!5555555!555555555! MBE655555555555555555555555 e
punches , x sssssﬁﬁsss6!56ssssssssssslsssss&&slassssss!sssssssaslsssosslsssssessassss%ssssss '
| R R R R RNt YRR AR AR ET FAA RN AT YRR RR] SRR R AR R R AR R RRR R Ril R Rt EE
83888388888!88&388888838SIBB888888.3888888.8888Ral!llllaalglﬁﬁssnsssa888888888

89999908999 998989999.99999999.9989993'9989999889993999&99999999989999999
TESE I NRBHDE n 0 mmmmnmsmo:nmmamammommmmumm:ummsmsr:esseomzmnsc«wem1onnmmun "0
IMORR TS) — S . N "

-

ETATE LAIVERSITY

g

Figure 5.2. A punched computer card, showing punches for numeric, alphabetic, and some special
- . characters used in Fortran. ' : v

. ' -, -

ZONE

DIGIT»

ZONE ~ DIGIT
1. CHARACTER PUNCH PUNCH CHARACTER PUNCH PUNCH‘
0 0 . Al .
1 1 J 11 1
2 2 K 11 2
3 3 L 11 3
4 4 M 11 4
3 . 5 N 11 5
6 6 0 T 11 6
7 4 7 P . 11 7
. 8 8 Q 11 8
9 9 R 11 9
. o] s 0 _2 -
A 12 1 T Q 3
B 12 2 U 0. 4 -
c - 12 3 \ O ‘ 5
g 12 4 W "0 6
E 12 5 X 0 7
F 12 . 6 - Y 0 8
G 12 7 Z 07 9
H 12 8 '
I 12 9
Table 5.1
Punched card codes
. ZONE DIGIT
CHARACTER PUNCH ‘PUNCH(ES)
. ~.Period‘6r Decimal Point 12- 3+ 8
{ Left Parenthesls " 12
+ Plus " . 12
S) .
“ Minus or Dash . 11 '
% Dollar 11 3-8
% . Asterisk ° 11 4 - 8
) Righb Parenthesis 1 5-8
"/ ‘Virgule or Slash 0 1T 1 “
3 Conna o 0 3-8
= Equal . 6> 8

Table 5.2
Punched card codes

~

g9

%

c T g

5.8

The special characters In Table 5.3.are used

granming languages.

in other pro-

Xt

ZONE

Y

Punched c¢a

rd codes

C. A pause for self evaluation.

Takg a

2

far, .

12

L1

70

DIGIT
CHARACTER PUNCH PUNCHES

\&_ Ampersand | 12

¢ Cent 12
\g- .Léés.Tﬁaﬁ . 12: 4 -8
| Vertical Line- 12 7 -8
! Exclamation ’ g §d 1 2~ 8
; Semicolon B ¢ 11 6 - 8
Not ' 11 7 -8
% Percent : 0 . 4 - 8
. Bréak or Underscore 0' 5 - 8
> Greater Than 0 6 ~ 8
¥ Question Mark y 0 7 -8
: | Colon | ! 2~ 8
~# . Number or Pound . 3 -8
@ éommergial At Sign 4 - 8
' Single Quote or Apust}ophe 5« 8
" Double Quote | 7 -8

])
Table 5.3

short "time out" and see how you're doing so °

T}

LAHORE IT

LY

ee— R
- -

//// 1. Interpret tfie punched card shown in Figure 5.3.

E[ﬂﬂﬁrﬂmnjﬁrﬂjmﬁﬂguﬁﬂjgtnmﬂgLHHmama&muumMEmMHM§ﬁmmﬂmemnuﬂ_
- n:oeunuoonuuuouugunung R 5 00000000000000000000000
wHIHIHIHIIIIIQIHl!llHIHIIQIHHHHIIIIHlllHlIIIIHHHIIIHIIIIIIHH]I
§222222222222222222222222222?222‘22'222222
S33333333333333333!3333:333333353;3333333333‘3333333333333333333333333383333.3'33333

YERS!H

4

CANAAAARA440404804000800804444484400 0444844404400 4444444444444444448444440444444
2 5SS MSmssSSM S SIS 5555555555555 5K5555555555555566555555555555555555565556555555
X 6M666606NG666666666666666GMRGGE6666666666666666656666666666666666666666665666566
RNl L RN RN RN R A R RN R N R R R R R RN R R R R R AR R R R R RR R RER AR RERE
;ssgssaasssassqssagsagsa:hsasa:hl]ssasasasaasaﬂessaaaassssaassaasaaasaséassﬁasss

9993099999993 W99993999K990906909989999999999909999998899099959809995996599993 89999

T 73358 TSN UBHIRYINNANHANDR ﬂ!ﬂ!lMhh353617353&404141““4&4504!4!505!SINMMSB57505"05!‘2@]6{536691“5?707I NNRBXNIAIB
INHURBRTH)

N

?? ! 1 |} 'SW‘OII HNHN FER: BB ll}! DII"W“G Uul‘lﬁﬂ ll 3!] } 1 l MII' aRnnn b}
! \! !!!1 !:!! E ! 7______3 53 ! 484380 31 5233 5435 3 §7 3 3350 61 62 83 &4 83 65 87 58 (3] A0

VRS

"

Figure 5.3. Interpret the punched card.

-

2. Using the blank card shown in Figure 5.4 and a

pencil,'mark the punched card codes for the letters

-

of your name and the characters of your Social

. Security number (including the dashes).

N\ . o

IR Ry e e e Sealo i TP T NSt T S U Sy, ORI SN ! e A L RSO, [S S S P S,

5.10

= = = i et SIS

i el = = - \'

11} ."‘l 3ETHRUHNYHNBY YRR N .-c}\nnunm NRHHMBRY BHOMRVSERRCBINIYIHLIIUN0OROUBEHRERAT an Y nnw

nannHNNDULHHRHOOHIE iR IM?SI&I!MMMMHMMMMMMMMMMM
- 000060000000000000000009 G U UD L QORI i W A U U Ul W s L) 00000000000000000000000
!!lllhllllll!llllIilllliltl)!!lllllll||lllIllﬁlll!lllllllll!llll!lllllllllllllll

222222222222222222?22?7???22222222222?22?32222222222?2222?2222222222222222222?é2
333]3333333333333333]1333]33333}33333331333333]333333333333333333333333333333333
44444444&444
55555555555555555*5yJHb\&ﬁﬁﬁSbb'Sﬁﬁﬁﬁﬁ‘5555555555555 9559905555559 995555555558555

OXLAKOMA STATE WMIYERS:TY

SGﬁBGEBBGBGGBBSSGEGbbGbSGbbﬁﬁﬁﬁﬁﬁﬁbbﬁbbBbﬁ668656586666666666GGGGGEGSBGBFSGBbGGBB
Y

7777]7777171777177?7171111777777771111171]177777177177 77’77177777777??777777?77

8838888388888888388885ﬁ88ﬂ388&88888888883888888888338_88ﬂ88888888888858888838888

9399999999999999999999 9&!9 9999994999999999399999¢8¢9
LT Y ey 678 3002w pr g oy LR L R PR L (R T R R R R R R T RN T W IR FU RN K]
MmNt ye ¢

999999999999999999

'J!HSS!ES)HSOGGHMHH&KMNHH70H' l

1;:.;:
P32

. Figure 5.4
Blank card for marking your name and Social Security number fL

?
o . . ' . .
If you feel that you're ready, them go ashead. If not ,

- then back up and review the material.

D. The Fortran statement card.
There is a card printed especilally for Fortran shown in’

. . {Figure 5.5. (Of course, the computer doesn't know one

L] L3 (
vcard from another; the various typgs and colors of cards

dre of consequence only to the user for his convenience.)
The card has various blocks of_columﬂa labeled to aid

you in punching Forfran programs pgoperl%._ Colunmn 1 must

* !

have a "C" punched in it for comments. Statenent numbers

g¥e placed anywhere in colimms 1-5. WPortran statements

Lt LN

LA

’Q

4

ron
Qm_ LW
STATEMENT]
HUMDR Rt

000809
Wy as
Nt
1
12222
1333
]
ﬂ“‘“
S e sss
1
%&sss
]
INRRE
]
98880,
99899

1

e 349,

9
o

5'11

FORTRAN STATEMENT

Fbﬁhﬁiﬁﬁiﬁioﬁdnnnounnhdﬁﬁnnﬁﬁﬁooﬁnnhhhh666dhﬁiiﬁiﬁéﬁﬁﬁﬁﬁﬁhﬂiﬁﬁﬁﬁﬁﬂ
rean nuu. Bk poaen O IR I E I RIRIBVELNLE LR RLA L uuuuiuuuuuwmunMﬁs&s»wuwnuuuuunmn g nn
tlllllllllllllllal{lllllllliltllIIII\dlllllIlllllltllllllll!jlllii
2222222272?2221227}222222222222222222222222222222222222222?2222222
533333333333331333333«333333?33;3333333333333333333333333333333333
44444444444444444{4444444444444444»4444444444444444444444444444444
35&55555555555555555555s55@555555555555555555555555555555555555555
sﬁaasssssssussssssssssssssssssssssusssﬁssssassqéssasssssssssssssss
117177111111)1111r1117111)11111741717111177111711i7117177771111717

88888888888883H888888&888888888833.88888BBB888888888888838888888888

IDENTIPICATION
000000049
neBHuitieh
RERRRRE
22222212
33333333
14444444

55555885%

666666686]

11111111
~
68888888

9909999999499999999988 9999939999999999999‘)9999899999999&_ 99999
LA R LR B IETIRR LRI SRR H nynsnn:uuuuur,uu.\nuuusnmunut-asssrsus:omszuuuu 14388 10 B I
L.Ik14

99
ra
1 35

9999999%
i3 NP

e RLRER (W H

. 43@4.0

Figure 5.5. A Fortran statement card

- ‘

are placed anywhere In columns 7-72. Columns 73-80 may be

used in any way for purposes of identification, such as pro-

\

gram name, programmer's name ox initials, or sequence num-

o

bers. Column 6 is used for indicating that a card 1is a

—

- cont inuation of the previous card.

-~

. You will get some practice using-Fortran cards later,
f

but” now you should be ready to take on the keypuhch machine.

I3

&

E. Punching computer cards.

The following instgbétiqns Qill‘intgoduce you to the IBM
nodel 29 keypuncﬁ machine. Go throﬁgh the.inst;uctions

carefully uné11 you can load cards, punch something into
some cards (for exaﬁple, your name, the datg;“your sbcial

atc.) duplicate a card, and‘ciear the

¢ ~

security number,

A}

Y e

.|.I|d

5.12

g

- . - o e —
Ig Py

i
nachine.

4/‘! '
. A
e e e e [. PR -

Notice: Somctimes pressing certain keys will cause the

machine t()'ﬂguqﬁ‘q>.” When this happens, press the REL
key to retease The machine,

B

L. Keypunches are located {n Ms 04, are\a 1light
rrey color, and are idéntified by a 29 lon the
name plate ou thé upper vight-hand frodt of the

machine. ;ggrdw are located in bind/placed among

the machines.

2. Turn en the wmaln switch located in froant of

{

\ .
your right kunee as you sit at the keyboard.”

3. Behind the name plate on the upper right is the

card hopper. The cards are held in place by a

. .
‘spring-loaded plate.. Place cards neatly and

secufely into ﬁhe"hopper In the upright posi-

a

t Lon. !

*

4. Three buttons or Keys on the right side of ‘the
- N . '

keyboard, -REL (release), FEED, and REG (register),

3 L 4

and one switch on the left center of the panel

L 9

of switches just aboye the keyboard, AUTO FEED,

.

control the féeding of cards into the card trick

-

There are two ways ‘to uze these controlg:
a. AUTO FEED switch "OFF." Depress the ®-

REL, FEED, and RE{ keys in that order.

v

This procedure allows the passaga of -

one card at a time through the machine

-

~ N -

5.13

and 18 useful for begianning users of
the_keypunch.

b. AUTO FEED switch "ON." Depress REL
key twice just after yoy have loadeé

the card hopper, once thereafter. Use

only the REL key for automatic opération.

When a card is in place and is ready to be punch=
ed, characters may be placed in the card by use
of the keyboard, which is simlilar to a standard
typewriter keyboard. Thg column on the card
curfently being punched is indicated by a pointer
and a scale on a drum directly in front of the
operator, upper center behind thé window. In
order fd punch alphéhgfic charaétera and other
characters on the lower portion of the keys,
aiﬁply depress the proper key. In order to

punch numbers and other characters on the upper
portion of the kéys, dppress and hold the NUM

(numeric shift) key, lower left of keyboard, and

then depress the proper key. .

When a card is being punched, it 18 in place at

the punch station. When that card is released
by pressing the release button (REL), it moves

from the punch station to the read or duglicéte.

oo g

station to the left of the punch station. When-

o
the DUP,(duplicz;e) key, located in the middle

RIS R S

5.14

of U&?top row, 18 depressed and held, the.infor-

mat {on punched in the card in the read poéition‘

is transferred to the card in the punch position.

An entire card may be duplicated; or part of it

may be duplicated by releasing the DUP button,\\

allowing corrections to be made. |

A card a{so may be inserted by ﬁand into

the card tréck at ihé }eaa.ét;tioﬁ.- fhe;é afe

two slots in the middle of fhe card track through

which a card may be pushed untgl it is against

the stop of the read station. Both the card to

be duplicated and the blank card to be punched

. may he moved into pésition eimultanéously with
-the REG button. The easiest way toﬁgo this 18 to
have the c?rd track empty, insert the card to be
duplicgted, depress the FEED button to feed a

Llank card into the punch station, depress the

REG button, and then dupiicata¢

* 7. At the completion of the jpb, CLEAR A&L.CARDS
FROM THE MACHINE AND THE DESK TOP and turn the
main swiich to "OFF." (The card track may be
c}@arad gy;9ma§§ca%}y by fl&pping the CLEAR

‘ . switch locatgd at the g;}rame right on the'panel
of switches above the keyboard to "ON.") |

Uéing'tﬁeaa instructions, practice.punéhing gards; duplicating

cards, and correcting errors. : {

2 & .

A

5.15

SELF EVALUATION FOR PART 1.

1.

Punch your name and social security number into a card.
Begin your name Iin column 5 of the card and begin your
social security number in colummn 50.

Duplicate exactly the card you just punched. :

£
Punch OKLAHONA STAYTE.UNIVERSITY in columns 11-35, Then

correct the error punched In column 17 by duplicating the

lyﬁrt that- {9 cprract and repunching colummn 17,

Find some Fortran statement cards in the bins beside some

of the keypunches. Punch the Fortran statement

5-4 XTAP=2.3%AVG/ (21.0+8)

\
in the proper columns of the card. The statement number
4 goes anywhere in columns 1-5; the Fortran statement goes
anywhere 1n columns 7-72.
Punch the Fortran program'ahown,below exactly as it appears,
ﬁﬁtt&ng\one line per card and punching the characters in
the columns as ghown. Do not expect to understand the pro-—
gram;. just punch it for now. The two lines of numbers
above the program are the column numbers. For example, i
indicates column 14 of the punched card; an "R" is punch-
ed in this column of the first card. The "0's" in the

v’ b .
program are slashed (@) in order to distinguish them from

- zeros. DBe sure to punch zero when you mean zero and "O"

when you mean "0," . o

e f

E\J

5.16,

e . by -\

’ llLllll 111 22”222232&3&39ﬁBB:’dS&&%A#M&&QSS55555555666666666677777777778

12345 7890123456 789012 345678901 23%56789012345678901234567890123456 78901234567890

C¢MP

-

ER. PROGRAM WRITTEN IN lwxluAN TV, e
TRY 1=2. 1 K . ST)
TRY2#2.6 e L
TRYSQO~6 ‘:.a‘? b

ANS=3. OWTRYLETRY2 / (FRY [~TRY 3)

o ' B o -

WRITE(6,%)ANs * ORI

FORMAT (1HO, 110 ;) .
1534003 . Co TR
JEND T - ,‘. . - T e

-~

e as necessary, ﬁdvu the cards; you'll be using them soon.

“ .) .».‘ -
.
. ’

PART II. Documentatian uf o, program.
. - N R - . 'r- . S 8

The® purpope of documentatidn is summbd up in the following

" limeric: EE) : T R

P

Johnuy found a program |
Sy o e

Ones ver useligs day.
anttiy whaY\ thut prohrm{x djd \ Coe
O\

It slmply \Udu L sayl

'}*\%ordcr for a progrdm t.o be vof use, t.o any user, including)

$ L

the programmew hima@li it must be ‘lccompanied hy 8 fairly detail~

ed. deacriptmn ~ome of the short prug\rams that You will write

for this Loume will ag\ém\(;nst t.'-u raquire any docuwg,zion; but -

\'l(~

AR

you need £0. develop good hab L td™ ‘Q{:\}.\y, 80 documensation of all

programs will be required.

. ".- i‘.v

F, Whht éhoufd;ba Included iﬁ'docug
C ?rogfém'documentation consiaty of two parts:

R o w i \e . wed
(1) program commants

(11) program dasnription

e __

1

j

Comments 1n a program should convey to the reader the

essential facts of the program and should include at

the beginning of the program

(a)

(b)
()
(d)
.(e)
(f)
(8)
(h)
1

the student's name, problem title, and date
submitted; J %
a description of the pioblem;

a description of the ﬁfogram;"

-4

o
spaclal or exciégﬁbnal conditions;

definitions andf;?rmats of input variables;

I

definitions and ‘formats of output vagiabléa;

definitions of other key variables;

&
error messages;

key comments interspersed throughout the

"

program.

The accompanying program description should include,

when appropriate,

(a)

P o SN

(b)

G'C)
(d)

(@)

[]
the problém ‘title, the student's name, the

_date submitted, the unit number ;

a brief description of the problem and the

@

gsolution methods employed;

a description of the limitations of the pro-

o
gram;

‘a description of major variables and of all

dimensional vériablés;

3.17

a description of possible errors and associat-

ed error messages;

\(' v I

T T T s TR ST e W, - P T (T e

‘A

5,18/

-

!
¢
i
§

| Stem WESR

A T e A { T o e s s e b - e o

‘\\-

(f) a compleate program listing 1?:}uding control

- cards, input and output; ,

(g) operating instructions;)
(h) a flowchart at a level of detail necessary

to convey the essential Information about

Fhe program;

(L) amdﬁscription:of-key~p01nt8—in~the~fIOW"“'“:

. diagram,
The sample program on pages 5.20 to 5.22 1llug-
Notice that one

‘
line in the program listing corresponds ta one punch-

trates many of the pointa described.
ed card. The C which appeara to the left of the first
several lines is punched in column 1 of a Fortran

statement card. Such cards are called COMMENT cards.
COMMENT cards are printed on the prégram output list-
ing, but are ignored by the compiler.

ments start in any column after colum 7 of a state-—

ment card and may be punched from columng 7 to, 72.

. Statement numbers are punched in columns 1 to 5;

column 6, the continuation indicator column, is punch-

ed if the statement §%~Qoo long for the Qfévious .
card and has to be continued on the curtent card;

Sequential lime numbers appear on the 'far left
of the printed listing. Comnments do not have a li@e
number. For example, line hﬁmbar 0506 1s associatéd
with the statement |

INDX = 1

s e

Fortran state-

S

e T

frmie TS et s e LS S L T - IR AL SR

’

FEE b ST T 4 WEE S AT 0T = R T ot nan 1 A T e st T e N L LSRR LN U SR P N P

5.19

which places the value 1 in the location assigned to
var;able callad INDX. //—N\

‘Note that the comments at the baeginning consist
of the author's name, the date, a brief deacription
vf the program, input card %éacription, output card
description, special operating instructions, and a
description of ;Le principal varidbles.

The comment éardé iﬁtefspersed ggrédghout the
program gives an indication of what the program is
supposed to do. This program genératas the glossary
listing that appesars in Appendix XI: 'The comment
cards at the beginning of the program would have been
easler to read i{f they had been get up like the terms
and the definitions of the terms in the glossary.
Comment cards with a series of spacial.characters
such as * and blank comment cards may be used to ' Al

advantage. For example, one might have punched the -

comment cards in the following format.

c
C INPUT
C CARDS ARE PUNCHED AS FOLLOWS:
C COLUMNS CONTENTS
¥z -
C 1~11 KEY
C 13-14 SEQUENCE NUMBERS
C 16-80 . DEFINITION LINE
C . ONE DEFINITION IS LIMITED TO 50 CARDS. -°
C .

RRFRL AR e kb

Comments may be punched aﬁywheté in !blumns 2-72.

(Actually, columns 73-80 may also be used, but generally
/ '

/ L.

!/81' L

E I R AR TR SR NTEST |1 T TN s T - e sl v LA =2, 2t o

o 5.20
B
) C AUTHOR: CHARLES ELLLS
C CLASS: COMSC NEW STUDENTS
C DATE: 18 AUG 1971 ' -
C° BRIEF DESCRIPTION: THlS PRUGRAM USES CARD [NPUT CONS IST ING ' ‘.
C OF LINES IN A DEFINITION OF A WORD.. THE CARDS ARE KEYED AND o
- W € SEQUENCEN. THE CARDS ARE CHFCKED FOR KEY AND SEQUENCE AND'STGRED@
€ IN AN ARRAY, WHEN $AE KPY CHANGES THE WORD DEFINITION IS PRINTED
C AND THF PROCFSS 1S REPEAY PO UNTIL ALL GLOSSARY ENTRIES HAVE BEEN
C WRITTEN. QUY OF SEQUENCE ENTRIES ARE REPORTED BY KEY ON Aj ERROR
C LISTING AND FLUSHFD FROM THF INPUT, ‘NOYT APPEARING IN THE GLOSSARY,
€ INPUT: CARDS OF VHE FORM;) ' ‘
C COL 1-11 KFY ¥
C COL 13-14 SEQUENCE NUMBER : .
C COL 16-80 OFFINIYION LINT
C ONE DEFINITION IS LIMITED T %0 CARDS ' , :
‘ C OQUTPUY: THO B.5%11 INGH LISYENGS. THE FIRSY IS THE GLOSSARY, —
C EACH PAG® TITLED AND NUMBERED. -THE SECOND IS AN ERRORR REPORT,

OPERAYING INSTRUCTIONS: $STANDARD BAYCH FORTRAN G LEVEL DECK .
SET-UP AND RUN PROWFEDURES ARE USED WITH THE ADODITION OF THE CARD; .
//GOFTO4F 001 DD SYSOUT=A FOR THE ERROR LISYING.

PRINCIPAL VARIABLES: @g
KEY 11 CHARACTER ARRAY HUR THE CURR\C;.

KEYSV 11 CHARACTER ARRAY FOR THE PREVIDUS KEY N

LINE 65 CHARACTER FOR [HE aunRFNr\gFFiNuTIGN‘LlNE.
LINES A 50 BY 65 ARRAY FOR THE COMBLETE OEFINYT ION
LNCNY COUNTER FOR™ THE NUMBER (F LINES PRINTED PER PAGE
IBLK A BLANK CHARACYER CONSVYANT ' .

LST FLAG FOR END OF DATA "

INDX - THE CURRFNT SEQUENCE MUMBER
CINDXSY SEQUENCE NUMBER OF TRE PREVIOUS L INE ‘ T .
DEFINE ARRAYS ‘ ' : S
0001 DIMENSION KEY(11},KEYSYUT 1l INEL 65) - s
0€02 COMMON LINESHS0,6%3

C INITIALIZE CONSTANTS AND COUNTERS
0003 DATA LNCNT/SS/,IBLK/IH 7,1 8TZ0/
C INITIALIZATION READ

0004 READ (5, 1) KEYLINDXo{LINF (4} yd=1,69) _
0005 1 FORMAT (11A1, 1% 02,1X,65A1} ° . 4
€00¢ INDX=1 : -

0007 GO Y0 11} . S
) C MAIN DATA READ -

0008 L3 READ (S¢14END=99) KUY, INUX{LINEL D 4 J=1365)

- € CHECK FOR BLANK GARD, YFS. REJECT 1T
cCce CIF EKEYLL)LEQLIBLKY (U TO 3 ;

-

SN RN NeNaloWe e o lre We Te WO

C CHEGK FOR END NOF DEF INI TYON - ,
€010 .00 5 1=1,11 , _ ¢
coly . TE (KEYSVAI).NEJKEY{T)) GD YO & 1 : | a :
0012 S CONT INUE . _~ T ’ .
: C SEQUENCE CHECK o _ -
0613 LF, COINDXSVEL-INDX) o NE.O. Ol INDX . EQ.0) GO TQ 4 . -
, 'C STQRE CURRENY L INF IN DEF INTTION ARRAY . v
0014 1Y 00,7 121,65 - S ‘ -
0015 T LINES{INDX I) =L I-NECT) A * ' ' N
' C STORE CURRENT KEV AND TNDX IN SAVE AREAS) '
cCle NO 12 I=1,11 . . = " !
0017 12 KEYSVIT1duKEYEDY - . l R
£o18 T INOXSV=sINDX S - -

CCis GO TO 3 L

&)
&5

L2E T i etk dmiek il

A L T A | TR TR Y TR Sl e T £ e v

"4 - T3 U
C CHECK FOR END OF PAGE.IF’'SO WRITE NEW HEADHNG ' .o s

0020 ° . & CALL PAGECINDXSV.LNCNV,ISTRY) . . -

_ C WRITE DEFINITION ON LISTING . S

021 + 7 DO 8 1=ISTRY,INDOXSV

022 . MRETE (6490 (LINES(Tyd) Jxls65)

10023 9 'FORMAT {8X,65A1)) -

0024 8 CONTINUE :

C 'CHECK FOR END OF DAVA : '

002% - IF {LST.EQ.1) GO TO 100) -
| C KEEP 'LINE COUNT STRAIGHY, OON'Y. ALLOW PAGE OVERFLOW
-0026 IF {(LNCNT+INDXSV42).6Y.55) GO TO 18
. € SPACE GLOSSARY LISTING SO ITS PREYTY -~

0027 . WRITE (6,10}

.CC28 . L1O_FORMAT {1HO). ..
_ € .'INCREASE LINE COUNT

0029 - LNCNT=LNCNT ¢ INDX SV +2

co3g - GO 1D 17
- 0031 18 LNCNT=55
' C SEQUENCE CHECK
.0032 < 17 IF (INDX.NE.1) GO TO & .

0033% GO _T0 11 _ o

. 'C ERROR, REPORT IY - |)

T 0034 & WRITE (4,13) KEY '

0035 ' 13 FORMAT (lH y°YHE GLOSSARY ENTRY NITH KEY °,11A1, IS OUT OF SEQUEN
- g 1CE*) “ = .
- C. FLUSH BAD DEFINITION - . o
. 0036 Do 1412111 . . . T
0037 14 KEYSVII)=KEY (1) B .

-P038 " 16 READ (5,1,END=100} KEY,INDX,{LINECJ) ;J=1,65)

0039, IF (KEV{}).EQ.IBLKD GO TO 16

(o % VR 00”1s~1§%,11
. Qo4l [F (KEYSVIE).NELKEY{Ed) GC TO 7

0042 © 15 CONTINUE o a o .

€043 GO TO 16 | ' '
) ¢ - SET END OF DATA FLAG -

0044 99 LS5V=] | , , ' -
,CC‘Q‘S . GD Tﬂ 6 . Y : - . 4

CO46 100 STOP - - . : .

_004T. END

i) \] %
r » - ‘ 4 ‘
‘ » . - t N
. l ‘ o |

e ' N Y . >

v v o : *® . IR

" T o | N

., . ’ @ \ o °
[} LI & 4 -
- .f‘/ :)e‘, - ‘.8:;)

0001

0002
0C03
0004

Q005
0006
co07
0008
0009
0010
0011
0012

0013
00t 4

0015
001 ¢

COrT

. 0018

0019

5.22

C

SUBROUTINE PAGE{INOX,» LNCNT, ISTRYT)
THIS SUBROUTINE WRITYES PAGE HEAD!NGS AND KEEPS LINE COUNTY STRAIGHY
COMMOA L INES (50, 695) (
DAYA IPAGE/1/ i
ISTRY=} -
IS THERE ROOM FOR ALL OF THE DEFINITION ON THIS PAGE
IFLCINDXALNCNTY JLEL55) RETURN .
YESs RETURN AND PRINT IV "
NO,PRINT AS MUCH-.AS YOU CAN
LNPOSS=S55-{ NCNT) '
~ IF (ULNPOSS.LEL2) GO TO 1 *
00 2 1=1,LNPDSS »
WRETE (6,3) (LINESCI oJ)od=1,65)
3" FORMAY (8X,65A1)
"2 CONTINUE
SET STARING POINT FOR REST .OF DEFINITION
FSTRY=ULNPOSS +1
WRITE NEW HEADINGS , , _
1 WRITE (64,4) IPAGE | v
4 FORMAT (1M]1,33X.'COMSC GLCSSARV'/ 3TX.*PAGE °,%377/7)
GEY LINE COUNT STRAIGHY
LNCNT =0
IF{LNPOSS.GT32) LNCNT=-LNPOSS

UPDATE PAGE NUMBER

lpAGEmIPAGE+1
GO BACK _)
RETURN i "
~ END
w A
€ -
! w
' .o x '
Sg Lo
i ¥

B e P =rer o B S i e S s e e

it is best to leave these colummns for other uses.)

Kw”) With this 1A mind, yéu may want to make your comment s
stand out on tha output ldsting. All kinds of varia-
t{ions may be used to accomplish this, limited only by
your imagination and creativity. (You maj_even wiash
to put.grﬁphic illuatrations In your program with

'\\J).' .

[comment cards.) Two examples are shown below.

OMMENT R ARk Ak R kaeok

w

C - %

C *

R C PLACE YOUR MESSAGE %
C FOR POSTERITY HERE, *

C T %

«
- ¢) W
C ek ARNRR | kel Kok

-
-

CCCCCCCCCCCCCCECCC
C********#************w*************************ﬁ**#*****************ﬁ*C
C* : - :
C* THE OUTPUT FORMAT FOR THE CORRECT ANSWERS IS CHANGED FOR EXACTLY *C
C¥ TWENTY QUESTIONS PER TEST. _ *C
C* . . . - * " *C
C****************WW*W**************W************************%ﬁ*********c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC&CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

~

SELF EVALUATION FOR PART II.) - ,
. ’ _ - .-
l. Describe a method of punching the first few comment cards
of the program on page'S{ZO 80 that each cgiegory gtands

out on the page.

A\ 4

R . . .- ’
2, Write a set,of comment cards giving your name, this course

*number, the date, and the'bbjectivé"oﬁ,this unit.
. . ' N o® .
3. -Punch the comment cards that you wrdte in 2, Place.them

-
- o

]

. | ’ | 'ég

%C .

5.23

'3

3.24

with the Fortran program that'you punched for Part 1. . Xy

- .

Save all these cards. You aye gradually producing a ! N .

-

Job that you can run on the computer.

R

" PART III. Running the Job on the Computer.

If you héve cof;ectly performed the activities and éelf
evaluations in Parts I and II of this unit, ﬁhéﬁ'you‘have a
AR documented Fortran program ready.to bé run on a computer,
. - (
Refer to the ACTIVITLES TABLE for Uﬂ}T /) fdr the proceduré -

. : for doing this. R N

ASSESSMENT: TASK: .~ - -~ -~ -«]
Actdally, you have already completed the assessment. task by

. " ~h
running your program on the computer. The documéntation must be

correct, the computer output must be correct, and you must have an
g N S . * N N ‘Q‘ .‘
B0/80 listing of your program. Take tha’ program dack (less control
. - LNy, . " .
cards), the printer output, and the listing to your instructor for

L}
-

his ‘approval.

WHAT NEXT? You're nearly raady'héﬁ to write your firet program,
but first yoﬁ.musc learn how to read and write -- with the

computer, that is. UNIT #6 tells you about that.

a
°
~ .
- ’ C . : - s
N -
. - '
.
.
1

T T

: - UNIT #6 (coms$§r

S TITLE: INPUT-AND OUTPUT

'} o RATYONALE: ln ordar for a computer to peripxm usLiul work on data,

- . R 1; ls necessary to "read" those data ipto’ the computer.. t .
; . bimilarly, In order to obtain the reaulta it 1is neces- -

. e
gsarv for the Lomputer to "write" those rasults-on some
. E . . -

3

‘ » form of output meédium. In this ﬁniﬁ, yowr will disdover
. how to construct ;ather simple iﬁphtxédtput commands in-
o L L _
_ . Fortran, . . - . .
; ¥ OBJECTIVES: When you {inish fhis«unit, you will bhe able to construct
:\,;, ' | input/uutput bortran statements to

- A (1) read dats from data cards,

- 4

(1) write reaults on the output printer,

(111) carry out (1) and (i1) by means of FORMAT ¥

statémenta.

Ydﬁkwjll also demonstrate your‘ability to construct a

-

Fortran prOgram with documantation and run it on a

, (omputer.
8

J?REREQUISITES:‘ UNIT #5

E
- ' : 4 - -
‘ .« M ACTIVITIES: The term input/output will be used throughout this = . . :
S : unit and will ‘often be abbreviated 1/0. .fhe tern is
_ ' . ' g tin o
L ‘ applied to ang and all instructioh@ and processes.

. . S
.] -

-t * 601

- ’ . N ') .n
o | . 87 . o
e v L. - S L

K b b b L] bl Rkt ~ o EE N a2 Lo g ek SEVITRY . T T e —e— e e == e -
i N PR - -

: o . R . o) .
. - v . “ - pf/ .
‘ . .' . . - - !
. ' BS . X
. . N .

related Lo putting information into a computer and

~

getting information out df'a computer.

- l. Introduction

In this unit you will learn to construct Fortran
KEAD, WRITE, and FORMAT statements. The ldeas covered
5 - _

are implied by the follgqwing questions.

What to do? . (READ, WRITE) _
Where to do it? (on an 1/0 device)

- .- How to do 1it? (by an appropriste FORMAT)

Fox a“givan computer configuration, it méy be)

-»

possible to obtain input from several differeat media, -

~

such asg carda, magnﬁtic tape, magnﬁtic diak a Qypewriter,
anogher compuﬁér, papar tape,. @th@ Similarly, ic may be
posaible to place-the re&ulns‘on @averql diffexentwmedia, :
-such as papar, gardé. paper tape m;g:efic tape mﬂgnetig;;iﬁ'.
) diSK typawritar, another q;hpgﬁér, etc. For thé,preaééto o:i{‘h

¢

we will make use of only’ Qne type of input médium and one..

w * - .
-type of output medium, namely .

~
- -

punched- cards for input * .. =~
. and) h ™, ; .
[P . . . BT
. - the printed page for output.. . S N
S ~ - . '
- - " -Figure 6.1 illustrates a computer with a card reader.for

. input and a printer for output. - - .) o .
[. ML _),»"T,‘l » N . ' . ¢ c. 8" l-

______________ AN Ty T .
) ’ ‘ 8
- 6.3
S > '
- . -
. K
\ B . , y
.0O. 0.0 |
RIS
_ . CARD | ‘
READER COMPUTER, PRINTER -1 S
’ - © .k
Figure 6.1. Schemat id repraesentation of a computer
] . with its 1/0 units. :
2. READ and WRITE statements. j S .
To read a data card, Fortran statements of the form
- | READ (u,f) 118t %
@ ' are ‘used. To wrlte a line on the line printef, Fortran

-

statements of the form

e et WRITE(u, f)
& q . . . i '
and y
‘ . | c7 e WRITE(u,f) list

are uéed; The parameter u dasignates an I/O'unit'nﬁmber

or an integer- variable name which takes - on the value»of

’ the I/0 unit number. The parameter f is the statameﬁt
) “number of the corresponding "FORMAT statement, and list ‘
. K v
R : S refera to a variable name. or to sevaral variable names
- ‘. .é . N
et - separated by comnas. Fach of these parameters will be . °
T L SN discussad’in deé%ﬁl in the £ollowing panggraphs.
T 1he 1/0 qn;t number u is &etermined by the computer :)
‘ W ‘ ¢
ﬂ;_a$ T S A
I o TR JUIRC T » 1o o T e n '

6.4

¢ - | \?\\
»

@ E -
system being used. Table 6.1 identifies the Lnit numbers
\
that you will need for running programs. \
~
u - WATF1V _ 360 1130
FORTRAN FORTRANhIV : FORTRAN 1V
‘READ - : S
(card reader) a3 > ¢ 2
\' — - —
WRITE
(line printer) 6 - 6 1
? ‘ J) Table 6.4+ Fertran 1/0 Unit Numbers v

AN

L' 4 L]

Examples of WATFIV Fortran READ and WRITE statements

are shown in Figure 6.2.

. P

s

READ(5,123) A,B,C
WRITE(5,321) A,B,C,D,INO
: . WRITE(6,1971) : .
< = %? 1971 FORMAT (you will find out what goes here in the pages ahead)
©123 FORMAT (you will find out what goes here in the pagegvahead) -
321 FORMAT (you will find out what goes here in the pages shead).

7

]

Figure 6.2. Exauples of WATFIV READ and WRITE statements.

W
r

»*

Examples of 1130 Fortran READ and WRITE statements

.~ * ‘are shown in Figure 6.3..

\y‘

=

ke

TR AT RILL IR A SR .
@ : T .. S h-{q‘w¢ oo v

o e 8 m e e ettt e o s 2+ o

READ(2,444) 1,A,Y
. WRITE(1,13) A,B
444 FDRMAr(von will find out what goes here in the pages ahead)
¢ 131} FORMAT(you will find out what goes here in the pages ashead)

e e e — e . - - ©a et et v ann —aean - - .

-

Figure 6.3. Examples of 1130 Fortran READ and WRITE statements.

By using the vaifable 1/0 unit number in the.READ and
WRITE statements, converslion from one comﬁ%ter 8ysﬁem to
another is effected with minimal effortt In Figure 6.4 is
shown the program segment taken from Fi;b}e 6.3 in a form

that can be used on either WATFIV or 1130 Fortran simply

k%
by changid} the first two assignment statements.
SR C 11{0 FORTRAN ¢ WATFIV C
‘ - INe2 . IN=5 -
“ 0UT=1 - . 10UT=6
< - | {READ(IN,444)1,A,Y . . i READ(IN 444)1, A Y
RIS . WRITE(IOUT,13)A,B = ' . WRITE(IOUT,13)A,B
Y S I - — .
. :P . . _. . | X, - !,. .
Y % . . .) a - ’. . _")
Iigure b 4. Use of variable 1/0 unit numbers to
.- . facilitate«uhanging from one’ computer system to another. -
. §= - . N s o o)
. An éven better wayais showh in Figire 6.5, using the
pATQ 1ni€ializ;§&on statement, a nonékecutable statement) \»
éhat Lﬂitializes'variables at the time the program is com-
pilad .‘The i)A‘]Z.A% statament, generally reducea axegut‘loh and
- compile tima and alao conservas storage in the computer,
.~ . o S _a.'r : ’
R .) :,I : \() 1 '
*» . st o S . A
o » | ¢ :.2 - ‘: m_ﬁ:a .

13 =~ S S ST, 4 e o @ = . AT T = e i = = Ty m—— 2 e e b) T e S L YL AP e - £ £ R AT s
ot m i s Sstasy a= - e L S . v e

6.6 S .

since machine instructions for IN=2 and IOUT=1 do not have *

¢ »

- to be aathp" stored, and executed. Use the DATA atatement v -

for initializing constants inr a program whenever‘poasible.
4 -

e

C 11430 FORTRAN Y C WAIFIV _
* | [pATA 1IN, 10UT/2,1/ o DATA IN,10UT/5,6/)
READ(IN,444)T,A,Y) - READ (IN,444)1,A,Y .
ITE(IOUT,13)A,B RITE(IOUT,13)A,B -

Figure 6.5, Using the DATA {nitialization statement
for initializing variable 1/0 unit numbers. y

¢ ‘ - - @ ,
. The DATA statement can be written in other ways. Fof,
example,
| DATA IN/2/,1I0UT/1/
is equally acceptable. Nocigg‘th&t in both yays'of writing
the statement the constants are always to the right of their
respective variable names and.are contained within-slasheéﬁvaé -
There must bg a one~;o~one correqpondencé baetween vari&ﬁié// /i‘\ﬁ_wﬂx"
_nameé and‘constants;)
,The;iigg of a READ or ‘WRITE statement is of arbitrary
! Leggth;‘ﬁowever,'it:ﬁaually is easler for the novice prg-
N : . ‘grammér-tq manage,a-pnogr;m that has several READ or WRITE
statements with short lists and several simple FORMAT state-
ments, father.ihan one READ or WRITE ﬁitﬂ;é long list and

©

a éOmp;ex FORMAT statement. For this reason, several READ

~

WRITE sﬁatements with short lists may be’ preferred to »
>) ‘ : . ’ . o -
P one READ or WRITE statement with a long list. With addi- }
) _, | . . | - \92 N

e
i -

"+ tional experience in writing and debugging (correcting,
v finding the errors {(n) fnput /output statements, you will

develop a style that 1is effective for you, e
[%]
The parameter I refers to g FORMAT statement which

glves the form of the I/0 record. For our purpoges, an

L
input racord is a cowputer card, and an output record is

@ line of print on the line printer. In other words, the

»~ -

FORMAT statement describeg the format or layout of a record,

3. FORMAT Statements ,

The FORMAT statemént descriﬁes the detatlled layout of
.either data on data cards or the output on the line printer.
When reading data, 1t ind{cates .

s (1) when to get a‘néw data card,)
(11) which columns of the~data card are associatled
with.gach variable,
(111) which coluymns of the data card are to be skipped,

and .

- (iv) the fleld descriptor to be associéted with the

data field. O |

When printing on the line printer, the FORMAT statement

indicates ’ :
* | (1) when to béé;n ﬁrinting on a n;w page,‘
(11) when to double space before printlng,_ .
- _ (111) when to single space before printing, ’

(1v) fwhan to print peadings and what headings to

%he :
o primt, . -y

<

(%]

Py

e e T

6.8

(v) . where to print the valuea’on a line,

(vi) the field descriptor to be agsociated with the
. values, and
. v _ -
(vii) the number of print positionsa to yse to print

" a value.

The ticld descriptux {8 used as a template or mapping.

to ttanqlata between an internal machinL respresentation of -

the data (usually in Rhe binurx number system) to an exter-

nal "people compatible" representation of the data (usﬁally-

]

in terms of alphabetic cha>acters and the base ten nugber

system). The field dascript$rs and tﬁeir correspénding

] . {
fctions used in this unit are given in Table .2 ‘ \\
£, . ’ _
v _ - :]
.]) ‘Q
Field - | -,
Descriptor : Action
,
Iw Perform integef convérsion from or to a
field whose width is-w columms.
. o .-— . '
Fw.d Pexform real conversion from or to a
field whose width is w columns with 4 IE
places to the right of the dacimal
point. f
Bw.d Same as Fw.d except for axponential
form. “ : . oo
nX Qmit next n columns from a data card br |
. - ingert n blank characters into an out-—
put line.
ol ?rint the n characters (iﬁcluding blanks)
i 3 immadiately following the H in khe next
' : o n positiona on the outpuc line,
- -~' ". w"b. e ' v
\ ‘ .

Table 6.2 Field Descriptors and Actions

1 o) H

-

Tt T T T [

EXAMPLES :
- \

Given the input data card (where ¥ represents a
- \ '
blank),

11111111112223
card columns: 12345678901234567890123 _
punched values: YB492WWB30. 728B12345678 T

the READ statement and its assoclated FORMAT statement .

-,
ROV S ah o emte h e e Mem s e Y b

}" 0
s | READ(5,131) 1,ABK,Y o ¢ -
S AJ/ﬁ*h/;giaJ FORMAT (15,F8.2,F5.1,12,F3,0) e

3

.set tHe variables in the READ statement to the respective «
- T

values

- 1. 492 col. 1-5

. C A 30.72 ‘col. 6-1F°

B "12.3 col. 14-18
K: 45 ‘ col.t19~26‘\\

¥: 678. . - col. 21*23 o
For the sgame data card the READ Btatemant anﬂ 1ts associated
-y b < e _} . .- . - .
_FORMAT statement ° .. o
“y . _ . PR

~ ¢ -

|l rewesan LAy oo oy o
11 || FORMAT(12,F3.1,3X,F5.1 2, 12,2% rg 0) "

g » » N 1

£l

" LTI
sat the variables to the respective values
DY . * ‘ |,| v M ' \l \
‘ , I 00 col. 1-2 Ahiank data columns
A : o e =are converted as
‘ ' ' ' zeros

v el [i

e bkl m

6.10 - -
Ar 49,2) col. 3-5 »
B: 30,72 _ col, 9-13 - a decimal point o
\ . ‘ - punched 1in:a data :)
card takes prece- ‘
dance over that in-.. . *
dicated in the
Y FORMAT
L4 . . .
> CKf 12 . cbl. 16-17
; Y: 56, col. 20-21 [
. ' the remaindétof ’
the card 1s ignored B
.- The WRITE statement with its ﬂBSOCiGted FORMAT state-
'.meni (¥ means blank) . ip N)
| -
.? . ‘ WRITq(ﬁ 9876)) I
‘k\\m , '~ - 9876 FORMAT(lHi 5X 2SHIDENTIFICATIONEORBHEADING) v T
S~ . o . s

RN . R - ‘ : . LN
e - "~ . prints N
P . . .) L "-..
St \\\ IDENTIFICATION OR HEADING
., | _ Jfk\primt positiona 6 through 30 ‘at the top of a new page. ' ‘
%@' o P Thc ~same- may be heeemplishéd by the statements
. . ' . & 693_' . . ‘. .] J
R | o~ . ! - : v .) : . 1—4' N /L“‘"«-.
o P L ¥ T -
N | WRITE(S, 43; » " S
R 5 PORMA&(BlﬁlMUMBHIDENTIFICAKIONHORHHEADING) ¥ O e
© e R . . - . .. N . 8 “;"5_‘;'?. ,g‘
’ v oo T B va - . . _ ' -, . e a " _' WAL,
Py ' | %g‘
b g The leftmost charﬁgter in a ﬁrint line 18 not actually . >,
¢« T N . ? ¢ Fy - '
e T priuted but con;rols the apacfhg baqween Liﬁes of print 1f

 ') e , printing'ia on a line pxin;ar. (This statemant is no&;t&ua ' ‘xg .

for the typawrixgr/printer used on the 1130 for example)

- .
3 w LI . . . e
. - L : .
N) ¢ *g . . 5 . v _ o * . , N . v
.- . - ~ . T N - .)
. .
' - RN
, 96 A
) -) "
* . . - . :
5 o f & i i.\ ’ 2 .
Y) . . FAY
. " '
. .
'\. L T
' . - ¢ d‘i

|

1 Tt e . \\\ © 6,11
w You must.deéignape.what'gpes into that character; other-

wise, chaos may result., The firat field deecriptor typa ¥

encounteted in a FORMAT statement, ecanning from 1eft to

right, mumt be an H. The first character to the. right of . -
// - the firat H controls. ﬁhe spacing between lines of pwlnt.
|
{ =~ Table 6.3 glves the ¢ommonly used control character$. -
1 : - _
. ! ~ L] .
: _ - . N
CARRIAGE CONTROL- - i
CHARACFER -, ACTION !
I : .
R N :
3 1 - R Skip to the top of Ehe next N,
' : R . page before printing.
a 0 i - - Double apace before printing.
/ blaunk .' Single space before printing
i + ' | Print on the current line.
¢ ' L .‘ ' . | . # /
L
. - 4 ' .
o . Table 6.3. Carriage control characters for the line printer. - . K
[. ' '> * i ’ : N - y
] GiTen the FORMAT statements . . e
. xZ
. R V3 | FORMAT(lHl 20X ZQHCALENDARMFORHTHEBMONEH)

&

123 |FORMAT(1HO,26X,9HSEPTEMBER)
125 |FORMAT(1H ,21X, 1HS, 2X, }HM, 2X , 14T, 2X 1Hw,2X 1HT,

4 " 11 2X, 1HF ZX 1HS /)
M "
. y | Y
» 2) - T .. ' | ‘%
. the WRITE instructions ' S X%
. o _ . *\
\
\.

. .
f ’ | .6.12 ') ' ‘v v ? . L4
i | -_ N

: WRITE(6,121) . Doeow
a WRITE(6,123) | R
S WRITE(S,128)° - S

-
L4 v N N
.

~

Instruct the line printer to print the following headings

At‘theltop of the next page. (NOTE: FORMAT statement 125.

_ : ks pGnched on more than one card. To signal that a card i -

"to be d continuation of a previous card, a punch is placed | '
in cplumn 6, caliad the continqation-column. Although any

punch except zero in columm 6 signifies continuation the)

] B ’

digit punches 1, 2, 3, . v e simplify keeping track of the
number of continuation ‘cards., APPENDIX I gives thqﬂnumber

of continuation cards allowed.) J//

&

%~ 20 blanks ——> CALENDAR FOR THE MONTH

SEPTEMBE%

L

. . . S MTWTTF S

4
* o

“. :
<« leftmost print position

L

%

Let's look in detail at these three statements,

N
-~ 4 & !

- 1
\

£ WRITE'(s,lz:L.) s

.
|1
L}

" IHI; carriage ‘control positions the paper so that printing
. L will start at the top of the next page. _

L t
’ *

20X,

C22H:

~

SUE Y Y TR

R "6.13

places 20 blank characters ip the next 20 print
positions.)

places the Q@f_haraCCQrs following the H into the
next 22 print positlons,))

L4

Be sure the character count preceding the H is correct.
In this example the 22H indicates that the 22 charac-
ters immediately following the H are to be printed. If
the character count is tvo gmall, the compiler doesn't
approve; and if the charactéx count is too large, the
next- field descriptor or a right parenthesis might get
swallowed. Count carefully! o .

In FORMAT 121, if 20H had been used instead of 22H,

the compiler would not know how to interpret the char~
acters TH (in MONTH) and would indicate an error. Also,
1f 26H had been used, the right parenthesis would have
been included in the stripg of characters to be printed.
Then; as the compiler continued to scan to the right, -it
would not find a right parenthesis and would ‘signal that
an error had been committed. :

T

WRITE(6,123)

“ﬁ\

1HO:

13 N\,
\

?

cafriage control spaces the paper up two lines for

-printing (double-space printing). ,

26X:

places 26 blank characters in the next 26'print
positions.

places the next 9 characters following the H 1nt¢';
the next 9 print positions. coe

WRITE(6,125)

. . - ’
L] 4 * .
' ¥
.
.
) °
.

21Xe

JHS:

-~

. ‘ N £

carriage control spaces the papar.up one line for g

printing (single-space printing).

rlaces 21 blank chayacters into the next 21 priat

positions. . i

3

places's intot the next print position.
9y
° . hd) ;\

e e LT s e e e e et

6.14 |

'following'the‘slashu

TSR S il $ e e S STTER TIT RS a Su ftt L <t S e S L 4 e e TR et e s R e A A g B S b e e e et e b7 Y

2X: places 2 blank characters into the next 2 print
' positions,
3
etc. . ,
1HS: 'blaca& S into the next print positionm.

/: inserts a blank line, ?

A 3lasﬁ-pr end of recoxd indicator. tell the printer to skip to

the next record indicated by the cary control following 1it. :
. . . . R R N Cm e L - e e el . R e e e e e o R

A slash followed by ‘a right~hand parentheéia actually defines

a blank record. Sinca a blank record contains a blank carriage \

control, then single spacing results, producing erie blank line.

A FORMAT of the general form Lo \

-

n FORMAT(/1H¥, . . .) : ' '

o !

introduces a blank line before printing (double spacing), while:
n FORMAT(/1HO, . . .)

intrpduces two blank.lines before printing (triple spacing),

which can albo be accomplished by | : . B
n-FORMAT(//1H¥, . .".) | s
Notice that in an output FORMAT a carriage control is required . .

after a slash, unless there is a right parenthesis.or another

slash (both of which 1ndicate a blank record or line) immediately
K

Similarly, v ot '

-n FORMAT(I-W)) /))

.- 4. N N . . .
introduces a blank line after printing, and : \fﬂ

n FORMAT(IN,”. . . //)

* .

vh .
introduces two blank lines after printing.

' n FORMAT(1HK, . . . 1, ...)

4 . L 8

ap#&ed record., ’ e

.) n FORMAT(IMK, . . . //1m¥, . . .)
and ’ Ty . '

- , ' | ﬁ:FORMAT(lﬁﬁ,.f L-;:/lHO, ce)

: both introduce a blank line (double spacihg) between the two

) _ printgd;line&:u SO . SR LA . o
e . _ o
o n FORMAT(lgw, eI, L L L) ‘% ' .
| and | |
“ n FORMAT (1MW, . . . /1m0, . .)
Uéth introduce two blan linﬁs.or‘tripie spacing.
‘Vérfical spacing on the-page with various cogblnaﬁiohs
.) | of slashes and carriage controls is limited only by your
inganuity and your needs. .)
- o " Slashes may also be used in input FORMAT'statements; . ; ‘ ‘ |
’ meaning to skip to the next card. e C ' Y -
g - A systématic way of number{ng ﬁdRﬁATistatementa;da desirable. ' .
| ‘ By placing all FORMAT statements at the beginning or end 4f a pro- '
"!gxam and setting aside, aiset of. statement numbers £or FORMAT state-
' ‘ ments, ‘it ‘is easy to adé)dalete 0r use a previous FORMAT state~ . | ,
ment, ‘Such 3 convention is axtremely useful for degugging pux~ | .
R _ pos@s> . o
More discussion of 1/0 gtateﬁents,is contained ip UNIT #11,)
but yQu know enough noy to c?ustéuét-gnd use’' simple_ I/0 fnstruc~
tions. L
L b N R . .
. 4. Refer to UNIT #6 AYIVITIES TABLE, Activity L
"5\\ o oo e C .
_ : ‘ ct s v
. - - | B LY
. SRR U S

-

Ty T TR R —

e = R S T B T TIRUOE WSS

A AT L B e < r—F v

/
Before you can*éonstruct a cgmpléte Fortran program, you must

be able to tell the computer when to stop compiling the program

[
<

and when to stop the execution of the program,

-The END statement cer@inataé the end of the compila or
tvanslation phase and” must go at the Ehzsica snd of your praﬂ
gram. The END statament tells the compilar program thac there . .
are no more Fortran statements to compile-or translate. |

The SFOP or CALL EXIT atatement terminates the execution
phasa and must be at the logical end of your program -~ that is,
at the end of the flow through the flowchart of the program.

It is the laét°Fortran.étatemént axecuted

While the statements CALL EXIT and STOP both terminata the
execution of the program, their functions may differ slightly on
different machinas. : . -

LY

Basically the intent of the CALL EXIT atatement is to termi-
o o
nate execution of the program abd to return control of, the computer

-

. back to the monitor program that is "{n chérgm" of the overall opera-

tion, allowing the cémputer to receive another job. 'sroé, on the

A

other hand, not only terﬁl\htes the execution of the program, but *

may also arrest the total operacion of the computer so that it
{

must be restarted with the START button before another job can be

proceaaed.

\ "

~ On the. IBM?1130 computer (M§ 214) you should preferably use

che CALL BXIT statementy otherwise the ompu\gr fuat bexrestartad.
On the IBM Systam 360, you. ‘may use aicgsr CALL EXiT or STOP,

since the compiler s programmed to interpret both sﬁﬁtements as

returning control’ back to the menitor program. " On WATFIV howevar,

s | 102

e

-y e - e - = - Srmaes chaas gotas P s el B, _ng_sk, R anth W S LY o o = =%;.:..==_,A,?n..__..'_.v.a.... AT AT ATV ahe B e o U YA T e e

«/’“’“.
6.17

- it is possible to receive a diagnostic warning if the CALL EXIT

q\' '.state@ent is }mmediatgly féllowed bx END. (The reasons for this

_are probably too aophistiéated for you rigﬁt now, If you teally |
want to know, ask aﬂ instructor.) Your program is npt -incorrect
if this warning message appears.

In summary, use STOP or CALL EXIT (warning possible) on the

360; preferably use CALL EXIT on the 1130.

SELF EVALUATION: You should now be ready to construct Fortran

) prbgra@s uaing I/0 statements and run them on =
a computer. Refer to UNIT #6 ACTIVITIES TABLE,

Activities 2 and 3. \\)

¢

- ASSESSMENT TASK: Please see your instructor. You will be required
to construct a Fortran program using I/0 state-

ments and run it on both the 360 and Fhe‘llaﬁ.

WHAT NEXT? You are now ready to tackle serious programming., making

A

- use of the computer's decision making capability. Continue with

Y

Unit Bt - ~ ¢

.

- Y 103

SRS PR bt o s e o L S o e S e e e T g g !

= b = ~ = T e, T = 3

L BB Asaidl fmning a5 B wre ame

Tt g R S L R VL g S eaa o o s S

) '

A3

, 0 .. \
- : /' ' . ./-.-.
/' TITLE: CONDITIONAL BRANCHING OR TRANSFER STATEMENTS

-

I - ‘ JUNIT #8 (COMSC) , . -

L e - : :
RATIONALE: One of the powerful capabilities of & computer is its '

ability to make certa}n loglcal "decisions" « that is,
. N .
. its ability to do a certain set of operations under a

<

certain condition and to do some alternate set of opera- -
tions if some alternate condition prevails. In this
. . unit you will ‘learn how to use Fortran for decision-

making.-..
T s ’

OBJECTIVE: At the end of this unit you will be able to construct

_ \ the four conditional transfer statements in Fortran -
L I £ L. _
- o the éomputed GO TO, thg aasigned GO 10, the arithmetic

= ‘ | - IF, and the logical I§‘~Jand to construct and follow (
the logilc of“program segments that make use of these

statements.

' PREREQUISITES: UNIT #6 _ L
- .

n . n,

ACTIVITIES: The first set of activities (A~D) is intended to ‘

%

acquaint you with the forms of the four types of)

conditional tranefer statementd and how these stater

»

ments operate. Activities E-G are intended to show
e J you how and when the four statements may be used in

* . 4] Ll

actual'prdblam salﬁing situations; a sample problem . v

' .' . 891 " -. |

I AT S, A s m g, T A e T e T R Ee s oy o 75 Tt e = 8 f s o i MR e € s TR o i e i S SR AL ooy r TP S S A GOLETS ESE T T e T ST s TPl e M R S e Sna ek gt

8.2 ' ,

. is given, and five sample programs are used to 1llus-

- £ tratfa tl.m statﬁments.]
- A. Computed GO TO.
Already you havé Been introduced to the unconditional
Gd TO statement.. In this unit you will leaén about two ‘
- more GO T0~statementa in which the tranafer is conditional,“r“‘”m¢“m”“
- rather than uncogditional- The }1rst\of thes@ is the com~ -
buted Go TO, and - the sacond is the assigned GO TO. | - ‘
Réfer to the UNIT #8 ACTIVITIES TABLE, Activity 1.
° . - E Sevgrél things about computed GO TO statements need -
special emphasis: | '
°. : . 1. In)the general form of the éomputed GO.TO,
~ 4 | /
. , T GO TO (n, ny, oey)y
- 3 o . .1 is called the index and must be an integer name. ?
T lg.muﬁt also Eg_precgéeé by a comma. . !
. R
2. The relationship between the index and the state-
) : ment numbers in the list, n,, ﬂ;,-..., 1y, is 7
’ . < positional. That is, w?én the index is one, éhe
firat statement number is msed; when th% index is
v ' cwoﬁ thg‘second stateﬁentigumbe{ is used; eﬁg. ’
3. Normally the value ;f the index ghould not be '
. alloweg to excged the-numﬂer of'statement numbers
i] _ in ;hé 1ist. (lsisk) In IBM System/360 FORTRAN, .
’ " however, if the value of the index does “exceed the < -
‘ ' , number of statement numbers in the list, then the | -
| : K‘ to. . : . ¢ ©
o a ' * “~ : ’ _ l OS N
. : ' w ' o . r

El

C.

Y
rd

8.3

first exacutable statement following the computed GO

TO is executed.
. : »

4. The value of the index is never allowed to be zero or

negative.
.) L]

Asgigned GO qg.

The assigned GO TO is probébly less often used then
. - - - / - N - :

the computed GO TO, and it is not available on all com-

pilers. (The assigned GO TO is not available in 1130 ¢

Fortran.) '

’
L

. Refer to UNIT #8 ACTIVITIES TABLE, Activity 2. \
- 4 T
When the assigned GO TO is used, the index, which is

1 in the general form .
q& 10 4, {(mn,, nz,'gu., n,) - ///

must hava_previously been assigned one of the st;;;;;;:*“
« : .
numbers contained in’the 1iqfhby use of an ASSIGN state-

mgnt. The index is not relatedﬂgo the positions of the

statement numbers, as in'the case of the computed GO TO;

but. transfer is to the statement number in the list which

1Y

has been assigned to the index.

In general, the computed GO TO can be used to accomplish.

anything that the assigned GO TO can do, as you'll see in

the example later in this unit.

Y . |
Arithmetic IF.. : o .

}

The srithmetic IF is an especially important condi-

‘tional transfer statement. While the computed GO TO and .

v o, *

L. 1o

v s e i e ol Py a8 i

ol

” the assigned GO TO allow any number Of ﬁoasibla transfirs,

the arithmétic IF provides branching only for the conditions
‘vf‘; i) . -
of negative, gero, and positive, ‘ " .

Refer 'to UNIT #8 ACTIVITIES TABLE,.Activity 3.

The arithmetic expression e in the general form

“ ~

R

IF (e} n,,n,,0,)
f . . .-

can be any valid integer or real arithmetic expression. For

example, .’ '

IF (X**4+3.0/X) 5,6,20

K
A}

is a valid IT statement, as ias

LF(N)10,30,5 e

.

. Two of the conditions may cause transfer gp'the same

-statement. In other words, a statement number may be used

- . .

twice. For ‘axample, (
J t

% | IF(2)5,5,10
causes transfer to statement number S-if the argument is

, nagative or zero and to statement number 10 1if the argu-

o] .
ment f8 positive. . - . fﬁ\\

D. Loglcal IF . : |)
Another type of H{fstatememt, the loglcgl IF, is

available with many computer systems. (The logical IF is

. o ~ Coo T
Lo it available in IBM 1130 Yortran.) The logical IF branches

on one of two conditiong, depending upon vhether the argu~

’

e ment is true or false.

-

Refer to UNIT #8 ACTIVITIES T%BL?Q Activity 4.
. ‘ \ !

*

197

A
h
w
]
'y
};2
Q
ERIC

198"

R M~ma_,w-wmmﬁmm“mp;"“wmﬂMm“m;mﬁmrr!.»ﬁTWWWNTNTTWMW“mMMVQﬂWT‘ I e ey
—pt &) [] : [\. . N
ror : . . ‘--' ‘I:" S ".‘ ‘)_I
- - .
. o o 8.5\ S %
. - : \ |
There dxe three.main pitfalls in’using the logical
. o " ‘{. . Y B 7 \ \
¥ o . .
o P) : 4
Rk N : ¢ » ’ 5\ h
jkiL 1. 1f the argument cannot be determined to be true
or false, an error will result. Whenever you
.) 4 . ‘
) write a logical IF, agk yourself the question, i)
: ‘ng + Y .) * ' .
~ \ "Is the argument true or false?™ - o . .
‘ For axampla; R ERNE - LU
. ". > ‘,_ , . . ok,
IF(5%N)GO TO'6 - . . e o
. F L e e X :‘.,t.;.»'_ : i-ii'f 2 E ," o "_.' o .. '._» L L,.,g‘“:‘
is ndot correct.- Is H¥N true ar is;it'falae?"Lyrﬁi.}gwﬁﬁﬁy*F'h'éﬁ@
T L N AL S T ‘I
. ; e L me T
-3 LI T s ¥ RS VN Lo v - -
| Actually, it's ngpﬁgpge eVenltq“?gk_yye ?ueSth?L§@?§@iﬁ*M¢ [
On the other hand, " v o
. : R : .
IF(5.GT.N)GO TO 6 : - v
L3 : - :
is correct. 'Whether 5 is greater than N (the "true")
') - < :
s case), or not (the "false'" case), can be.determined
(.o _ ‘
immediately when the value of N is known.
2. Lack of' understanding of the operation of the logi-. '
cal I¥ can cause incorrect results in a prograh. Tix ’
fn mind £irmly ‘the paths of execution in_the_logigal_-
IF.
Y .,
Suppose Sl‘and 82 represent two executable
Fortpan statements. Here is a flowchart for the
ov ‘ i . 7 " "
genaral form of the logical IF
r— . - - . N ~ \
' ﬁ o
: IF(e)s v . .
2 " 1 _ .
2 N K v
L.
provided that S, is not a transfer statement:,

TR T € SR e ST Ry,

- o
.
-
.- -
-
-
L]
.
*
- " ' . -
. - i
- ~ 7 ’ [
T - N .
) \ «c ¢
» 4 N
-
* K
- Y
-
" Ay
.
N ~
' »
1
i
>
. -~ . -
. t
L
-
»
- - - *
S
-3
.
\“
X ~
”
L)
¢
-
-
v
1)
~
.

.Y

.Notice that onlz”s2 33 executed if the argdmept is

-

~

/
3 True 'i;
L
. ‘ _ ;é;
,.§1 . . | “
¢.

‘ false, but that_both S, and S,

executed if the argﬁmeht is true.

*

(in that order) are

0f course,-if S,"is a,tfansfer statement, then

only S, will be executed if the argument ig_false,
. . - ﬂ

and only S, will be executed if thﬂ“&tgumen

R S

[0

?
)

¥

a

IF{a)GO TO 5
S, "

Here is a flowchart for the general form

>

H$§Q¢true.

*
[J
(] *
.
»
a
.
|}
L]
.
_..___.___ —_—— [9
14
P
A S
&
-
&
-
M.
e
*

~

TR R e I e T e N N

v

3. Do yoﬁ aea anything wrong with the }ollowing -

sqﬁ%emants? s)

- 3 1
.

IF(N.GT.5)GO TO 2 ' A T
¥ 2 N=N+1

v

You should! Look at a flowchart for the statae- 3

4
. ments.

False

T

The statémeng N=l+1 is executed if the argument is
true; it 1s also executed if the argument is false!l
Nonsense! The IF statement might as well have beén

AN

left out!

Putting“it all together. - ' | g
How do you decide what type of conditional transfer

statement to use? 'Ihe answer to that question is deter-

) L)

minad’by the .pfoblen itself and in part by your prefer-
- '/’

ence. ”;)

1]n

8.7

)

T TEIREETTm T ORI TR ETTE e s e

8.8

na
& %&?’»"\;

t

In gengral, assuming that the logical IF is avail-
able on the computer yﬁa,a(e sing, logical IF'G and
arithmetic IF's can be used_intérchpﬁg@ably.‘ This 1is
particulﬁrly true if 96iy two branclies from thaaari;h-

) / :
metic IF are bein 7ﬁad. ‘For example,

/

IF (X

L
r

could be used/in etéhangeagly with

. ,'; ﬂ\'\l ! - Yy
IF(X.6T+0.0)60 16 7 ¥ S
tafenient #5 goes here. W

branches of the arithmetic IF are being

used, howpver, then two "logical IF statements are

w1y

éequired. Fpr example,

|
, | IF(X)5,6,7

]

and .. 3 .

| IF(X.GT.0.0)GO TO 7
|IF(X.5Q.0.0)GO TO 6
. Statement #3 goes here.

could be used interchangeably.

The computed GO TO is particularly useful when

»

several branches are needed; especlally 1f the condi-

tion of transfer is based on conaécutive integexrs. For
M S '
example, suppose that you wish to make a count of stu-

L4

dents who .are freshmen {(coded 1), sophomores (coded 2),

5.7 | N

~ e e’

P

© g e aes]

- ‘=
"
-
Y
w
)
(
G.

0 TR 4 T T e T e s e e e e e

Juniors (coded 3), and seniors (cogpd 4). OUne computed
GO -TO can test for all four cases and transfer to the
proper counter. This is much simpler tQan using three

logical IF's or two arithmetic IF's which gf?ld bea fe-
quired to accomplisp the game ;ésk. ’

The assigned GO TO is very ganeral; since state-
ment number ass&gnment: aré determined;;y vhatever con-
ditions the p?ogrémmer wishes; Iﬁ dées ot depend upon
co@secutive integers as the computed GO TO éoee; it does
not check just for positive, negative, or zero or just
for.trua or false. Any set of predetermined conditions
&ay be uaed for statement number assignments for the

- Index of the assigned GO TO. As already pointed out,

however, the same thing can be accomplished by assign-

ing values to the index of the computed GO TO.

Simple counters.

In a moment we'll look at an example that illus- °

trates the conditional transfer statements. But before

we do that, you need to know about simple integer counters.

Refer to UNIT-#8 ACTIVITIES TABLE, Activity 5.

A gample program. .
Now let's look at some programe which make use of
IF, computed GO TO, and assigned GO TO statements. These

programs will also illustrate the use of a simple integer

\\\ counter. Here 1s a statement of the problem:

N

Suppggg/ge have & set of data cards, each of which

~

112

o~

C e

GO TO, ang

~

"has a student's name ard JD number, and his age,

I

se#, and claésiff&htion punched in thé columns
!.shown below. T
Coluﬁha 1 - 20> Nawe
" Columns 22 - 25: 1ID numb;r
Columns 26 - 27: Age
éolumn 28: 1 fofr?kesbman
2 for sophomore
\Lﬁ\, 3 for junior | o~
.@Qésf.eehiér
Column 29:_'1 for female
2 for male _ : f
3 for 1a§t card
We want a list of Ib numﬁers and a hgad count of

" male students wh¥ are freshmen or sophomores or

‘who are under 21.

There are a number of ways to program the solution

of this problem; we will examigg five programs with

'théir flowcharts., Figure 8.1 shows a solution that

uses only arithmetic IF statements for decislons, and
;i%rre 8.2 é@ntains the saie program using only légical
IF statements. Figure 8.3 shows a program using arith-
netliec IF aﬂd computed GO TO stafements for decisions,
while Figure 8.4 shows a program using logical IF and -

compuced,gc TO statements for decisions. Finally, in

Figure 8.$:decisions are made with logical IF¥, computed

4 A4

)}

_assigned GO TO statements. .

g

3

U

T Ty e m e IR PRI i T ST T e s n.,._mm,g:;,—sz..“‘-s,m B i T T e S B .J—_‘.,lz.r%&‘ ."’L L et L ~ T E

é;ﬂ_”_,““m“L_ e N o
' . C _8tart ‘ S _— L

_|¢ , ' . R . , . . . '“}

Init:i.‘alize couriter v

-?i‘ 3 ' ¢ [] ’
T = - B ‘ . DATA IN,TOUT/5,6/\gOPNT/0/ .
3 -gﬁiiséniééiE'- // N St 10+ READ (1IN, 1) ID, IAGE, ISEX
J o » L5RX - - : © IF(ISEX-2)10,11,12 : :
.0) 12 8TO]
) 11 IF(KLASS~-2)8,8,13 "
- 0 o ' .13 IF(IAGE-21)8,10,10
< ‘ - \\\ | 8 KOUNT=KOUNTH1
) . WRITE (IOUT,2)KOUNT,ID
B GO TO 10 . -
R i - 1 FORMAT (21X,14,12,211)
B - 2 FQRMAT(1H ,I5,1H.,2X,T4)
Stop b END
m . . N
_+/
.-
+ Wy
g »
. -y /\ | - | &
< ' ; _ Increment Mnter . '
¢ ' Write count, | . . , \
) e ID o |
. | - .

[y

. Flgure 8,1, Prc_)gram using ohly arithmetic IF statement for decisions.

- a
0

-

Initialize counter

" g
N

I &.

]

/

Read ID,IAGE,. //

KLASS , LSEX

Yes

Increment

counter

- \) /,,

Write count _.;7

and 1D

SRCPRY SORN ..ml

.. R i S S

e et By e bt

'S

DATA IN,IOUT/5,6/,KOUNT/0/

READ(IN,1)ID,IAGE,KLASS, ISEX

IF (ISEX.EQ.3) STOP

IF (ISEX.NE.2)CO TO 10 °

IF (KLASS .LE.2)GO TO '8

IF (TAGE.GE.21)GO TO 10

8 KOUNT=ROUNT+1
WRITE(LOUT, 2) KOUNT, ID

GO0 TO 10

1 FORMAT(21X,14,12,211)

2 FORMAT(1H ,15,1H.,2X,%)
END

10

Tlebg

.
, e

f"‘

The program tan also be written with only two IF
statements.

L

Figﬁre 8.2
decisions.

computer bscause of the logical IF statemey

DATA IN,IOUT/5,6/,KOUNT/0/
10 READ(IN,1)ID,IAGE,KLASS, ISEX
IF (ISEX.EQ.3)STOP
IF (ISEX.NE.2,0R,KLASS.GT.2.AND. IAGE.GE.21)
“$ GO TO 10
KOUNT=KOUNT+1 - .
* WRITE(IOUT,2)KOUNT, D
GO TO 10
1 FORMAT(21X,14,12,211)
2 FORMAT(1N ,I5,1H.,2X,14)
END .

¥

Progyams using only logical IF ‘statements for
(These programs cannot he rpnpsz the IBM 1130
84)

~

B e R L IT. L L N U

Z1°g

1

6

A

Initialize counter , .

5

Read ID,IAGE,)7

AT e kit i
-
IS _ — [_
” Id
)
& . 4
- ' - / ‘
' S
A

KLASS, ISEX

%
/..
¥

#+ Increment counter

£

. - ’ // Write count,
D

‘DATA IN,XOUT/5,;6/,KOUNT/0/
10 READ(IN,1)ID,IACE,KLASS,ISEX
GO TO (10,11,12),ISEX ~
12 STOP . _
11 IF(KLASS~2)8,8,13
13 IF(IAGE~21)8,10,10
'8 KOUNT=KOUNT+1 -
WRITE(IOUT,2)KOUNT, ID
GO TO 10 1 'f':\"ﬂ
1 FORMAT(21X,I4,12,211)
2 FORMAT(1M ,I15,1H.,2X,I4) . - \
END

~

Figure 8.3. Program using:computed GO io and .,

arithmetic IF.statements for decisions.

i e e L P e ER SR .-m:v« b TR TR - S WS M AT - ST T —m R R R T e A LTSRS M e e 8 e e S “;,.-,,.-»(T B s . IEEL U W N i U PR B R ARt
—— e e —__.‘_.. e i e mmmn im memmmm e = e e = e = e e imm e e e ...___....-_ - .._: . — —_ —_ —_ e _.._..M._'_. - ———— . ---.-é"_.--:"-"h“. ——— - ,;.’ - .;, R _..\.... ... e P e m e e . [
AN) .
. .) & ' - *
(Start] . . /) . ; : .
\ ‘ Initialize counter J[' (" . =
® ' , ; \ ' :
_—e ' : o .
. ‘ ' T = - N
INDEX=1 4 | : -
. . = TS ; SN >y ' : LA
X > o e % DATA IN,IOUT/5,6/,KOUNT/0/ '
Read ID,IAGE, - A 10 INDEX=1 .
A g, ' - GO TO (9,11,12),ISEX
. b 12 STOP
3 v 11 IF(KLASS.LE.2) INDEX=2
- IF(TAGE .LT.21) INDEX=2
, l(« GO TO (9,8),INDEX
N 8 KOUNT=KOUNT+1
Stop > WRITE(IOUT,2)KOUNT,ID . .
GO TO 10 . \ :
Yes N » 1 FORMAT(21X,14,¥2,211)
i 2 FORMAT(1H ,I5,1H.,2X,14)
. END R -
INDEX=2
J
Yes
TAGE<21
» v
o ~p
INDEX=2
= l Figure 8.4. Program using computed GO TO and T
logital IF statements for decisions. (This
program camnot be run on the IBM 1130 computer
st l _ - because of the logical IF statements.)
In'bremer;t counter . : ‘ '
: \l‘ - o - ' . . . ’ o L .
L e n 120
Q L) ¥)

. .
. a
> : . - ..&) v e e erems e - N 3 e A i ChattNrmmr e . e N o
B . o, A] .
A FuiText provided by Eric - : ’ ‘
. - . - R . . . o T i} ’ B :
) - ; . . 3 Lo . - N

o . i p
* . .

N

B e I ST TSI

T S L T ey e

Initialize counter:

5

ASSIGN 9 TO INDEX

-

Read ID,IAGE,
KLASS , ISEX

ASSIGN 8 TO INDEX

PSS I - e e, 1 e 3 e e |

DATA IN;ZOUT,KOUNT/S,G,O/ *
10 ASSIGN 9 TO INDEX * . .
“ 9 READ(IN,1)ID,IAGE,KLASS, ISEX ‘
GO TO(9,1Y,12),ISEX
12 SsTOP - :
11 IF(KLASS.LE.2)ASSIGN 8 T0O INDEX
IF(IAGE.LT.2)ASSIGN 8 TO INDEX
GO TO INDEX, (9,8)
8 KOUNT=KOUNT®1
WRITE (10UT,2)YKOUNT, ID
GO TO 10 ‘
FORMAT(21X,14,12,211) -
FORMAT(1H ,15,1H.,2X,14)
END '

X
, ’“}
LI
-

‘ Figure 8.5. Program using compuﬁed GO TO;'aséigﬁed .

N =

»

ASSIGN 8 TO INDEX

-

Increment counter

N

. '// Write cdunt, ID)7

S

f;!ffh

GO TO, and logical IF statepents. (This program -
cannot be run on the IBM 1130 computer because of
the logical IF -and assigned GO TO statements.)

X e

§T°g

N - 4 182

8 :16 {

Which of these programs cannot be run on the 1130

computer and why? v

4

4

\
List. The data input will consist of a set of

data cards, eéach containing a student's ID num—

)

;&yrfécolumns 1-5), the student's classification
ébéé (column_6, explained in the table below),
the number of hours in which he is enrolled

(col?mns 7 and 8), and his.ghkade point ayerage

L3

(columnsl9~13, decimal point punched with three

digits to the right of the decimal boint).

Classifis_tiqo ‘Code |
Freshman " o o
Sopﬁomore_ 2
Juniox 3
~ Senior. 4
Special 5

-

[}

]

-

Y

&

* :
In oégmr to qualify for the Dean’s List, suppose
that a student must be a freshman, sophomore,
Junior, or senior; must be enrolled in twelve or
more hours; and must have a érada point average
of 3.50 or better.

The last cafd°will haviy only a 6 punched in
column. 6 where the classificqgion code 1s punched.
. The prdgrhm'is'to Qéké'; 1ist of iﬁ numbers
and grade point averages of students who qualify

for the Dean's List. Terminate execution when the

' last card is encountered.

Use. at least one computed GO TO, at least

*

‘ oné logical IF, énd'at least one arithmetic IF.

in your program.
Run your program on the 360 computer until
it 18 coyrect. Punch the set of tast data shown

below for trying out your program.

. e \
12345678901234567890

111114163.678
222221152.678
333332123.500 .
444443104.,000 '«
555555163.850 '
666663181.875 . .
777772133.750 :
6

-~
{

' ASSESSMENT TASK: Turn in to your instructor the printer output and

©

the program deck for the problem you worked in the

self evaluation section.

. HE

8.18

WHAT NEXT? Go ahead to UNIT #9.

=

t

M s

Your instructor will give you additional -

assessment tasks. You will be required to con-

struct ong or more Fortran programs and/or pro-

gram segments making use of conditionaloi}ansfar

statements.

%‘TITLEz ARRAYS AND SUBSCRIPTED VARIABLES

RATIONALE:

OBJECTIVE:
P

some common characteristic, such as points on a curve

B

UNLT #9 (COMSC)

Y
In order to handle large groupa\g of data which share

or grade point averages of students enrolled in a uni~
versity, some means of grouping these data together under
a single variable name, recognizing that the data share

a common characteristic, and some means of referring to
épecific data items, recognizing the uniquaneés of each

data item, are needed. In Fortran, arrxays and subscripts

»

are used for this purpose.

At the end of this lesson you will be able to congtruct
a Fortran program that makes use of one~dimensional and/

or two-dimenslional arrays.

: PREREQUISITES: UNIK #8.

ACTIVITIES:

Activities A, B, and C are designed for students who
cannot identify the terms subscript and element as used
in a set {or an arréz) of items. If a set of values of

x containing n elements in the notation

:Kl, Xz, x‘s, v & sy xn "

P

and if a set of values of x containihg n yows and m

L

9.2

€.

columng in the notation

x . 1] L]
: o1 *u,2 %1y *om
X X X s o X
2321 252 253 2,0
X > . * @
3,1 5,2 X3, g ,m

> x‘lal %,2)Kh’s vt](n"n
are m@aningfhl to you, then skip to Activity D, page 9.6
1f these notations are not meaningful to you, then go
through Activities A-C. Activity A describes arrays;

Activity B describes subscripts for arrays of one dimen=~

sion; and Attdvity C describes arrays of two and three

dimengions. ~

L]

What is an array? An grray is/iiﬁs}y a group of itmes with

some common property. /A dozen-egis is an array of eggs,

sharing the common property of "eggness." A group of red
things is an array qf red things, sharing the common property
of '"redness.'" People éag be grouped into arrays in many

ways ! an array of malés and an array of females; an arfay

of tall people and an array of short people; provided that
tall and short are properly dafined;'an array of blue-eyed
people and An array of brown-eyed people; an array of red-
haired people, an arfay of blonéfhéired people, and an array
of all the rast; or simply an éérgy of people.

In Fortran, arrays are usually composed of numbers;

but they may also be composed of alphameric data, alpha-

\

L2y

]
b
¥
Q
ERIC
'_

B

LN RN |

R e e
LY

al‘

[
dot vomt ed, el other tvpes of data. For

nane g b .

mer Lo and

con e 1R, A artay containing the grade
»

example, I we wWeoe

podut averagues ol stadvote, we would have an array of real

number .

The 1tnGavidu i l:\fz\g\. i aul catay are relerved to

LR DEETITER SN (S SR I SURT T N SN

-

What o 4 sabeies api ! Vonnh cipt o rs ih'w.&vi\ aumber t hgt

.] ,
doioerth o Gt v the poatiien din

the arvay of an individual

Gooubnoript o is oA

Y
RN ITTAYES I S T &

chrand the o not e o g subsoript

e

Wi L e e v Ve

Pt de o (TR TY R ..} ot ceen luoa catton, repre-
SR) b ' . [)
‘ - TN

* -

A\ - ‘.
' N "~ 3
l i 4] { ' :) ; | 30
! \ ; vt N teopo £
! l
| : ;
t
! v
: ~ Tt “ N
; \ \ b
H , § i ‘ ’ . » ;
| oo
| <

. ot eyt o b rarny manner; bat
BOM® Gl Ted o my e 0 ke a0 G dad Leated In the
¥
dragr e, el b Peeres Lo suop e cenvendent.

Suppento tadgl v, re U v pednt to epe number 3,

You cariarats Foave Lo diibicnty doing that, do you? Lpg

number 3 e migeely spec i faid Uy bedng in the third posi~ .
¢ ion (;_m' misebe et Poose che veiciencs point that was arbi-~

[y

tracily dhosea). ninfinly, 511 the other epps ave uniquely

3 K3

128 .

e U LI e aant T TN

9.3 -

R e bt Secenshbi cad Rt R SIES AR Y T

9.4

o

i

epeciﬁiﬁd by th@;numher of ‘the position in which -each egg
is located. ' PR
Conaidaring thepe eggs as an array of eggs, we can re-

fer to the poaitiona}x numbere as subscripts. W@ could refer

 te the egg in tha @hgydpr&éﬁlgzkiihiégg, read as egg sub-

threea, - . . e

Example 2. Consider the days of the year. They too

form gn array, and each day is ‘uniquely apécifiad by a num-

ber. For example, the bithd&y of Abraham Lincoln is che

43rd day of the year. (It's also February 12, of course;
we'll consider that notation later.) In array Jargon, we
could say that Abe was born on . day, , or day-sub-forty-three.

Example 3. Consider the seats in an auditorium as an

‘array of seats. Suppose that you are assigned seat number

108, or seat-sub-one-hundred-eight. That seat number defines
uniquely a position in the auditorium in which you may sit.

Do you now have a firm gr@ap on qhe notion QE;; subscripts

speak of position 5 1/2 in the agg carton or seat A5.32 in

L
the auditorium? Hopefully you answered, "Certainly not!"

In the definition of subscripts at the béginning of Activity

2, a subscript was sald to be integer; that restriction should
make sense to you now.
The:arrays considered in this section are said to be

one~dimensiona1 arrays because they have one subscript or

one poaitiqnal numberuassociated with each position in the

129

C,

- OOOOOO

SPTEIE, cmd SN e -

B R R e e

]) 9.5

arrays. There are other ways of looking at the positione

r

in arrays, however; one of theae will be considerﬁd.in:che

next section. /
Let's go back to the eggse and pumber them in a, different

o

way .

- OOOOOO

Clearly, there-are two rows of eggs, each containing six
eggs. We can sgacify uniquely any egg in the carton now by

stating two positional numbers; for example, the third egg

-on row one is egg, , Of egg-sub-one-three. (The row number

ie arbitrarily stated firsc.)
<2~Egpaider agéin the year as an array qf days. The year
can aiso be thought of as being divided into groups of days,
or months. Thus, the 43rd day of the year way also be re-
'ferred to by saying "the liﬁh day of the 2nd wonth," or dayz’xz,

having two positional numbers.
. ‘1- : ! ’ L
_:0r consider the seats of an auditorium. They may ‘be

numbered by row and by geat - row 5, seat 4, for.example,

,or seat, .. ‘ - ~
. , _ ‘

4

In ithese examples, two positional numbers or subacriéls |

~3

were used in order to identify uniquely each position in the

arxay. Such a system of numbéring is sald to be two-dimen-

sional, and the arrays are two-dimensional arrays. .

~ . 130

. o T
/ - o ‘

T T T TR TR e e A TR e A et e iy e et

T - SR = B P S P U e T L RN USSP RPN NN S S S N
\\ . Y \‘
.

| . 9.6 \\ .

-) L Whether an array is one-dimensional or two-dimensional

e St e e e v

‘\ 18 rxeally a matter of preference, Certa;;2£?pes of probleus
Voo v v «

\ may, however, be more easily accommodak@d by a one=dimensional

_ :‘ drray, while for'othara a two-dimensional array‘may be better

- One—di?ensional arrays do require 1ess"execution time in the

‘computer.

- ' What about the eggs in -the carton? Both gne~ and two-
) RO S

_ dimensional arrays can conveniently be used. In other words,
to think of the eggs as twelve eggs or as two rows of six

. eggs each maigs iittle difference probably. But with phe
yedr considered as an array of days, we usually p;efar to
think in terms of a two-dimensional array ~- that is, monthg
and days. : é. |

» In the case of the seats i%han auditorium, -it's definite- | “

ly easier to find a seat if youxére gilven the row and the.

seat number; rather than just a Bingle number for the seat.

Thare are also arrays of more than two dimensions. For

eﬂ

example, we could think of the year in terms of months, weeks,

and days. The third day of the second week of éhe sixth month -
would be designated QEYG,z,a* having thréa subacripts.. Or the
seats of the aud@tqrium might be divided into sections, rows,

v

“and seats. We might have section 1, row 5, geat 3, designated

; seatl)

5 3° These are exgmples of three-~dimensional arrays.

D. - Refer to UNIT #9 ACTIVITIES TABLE, Activity 1.

SELF EVALUAfIOﬁ: Refer to“UNIT #9 ACTIVITIES TABLE, Activities 2 and

3.

S e e e e TRt ET PR PR P A
]

9.7

ASSESSMENT TASK: Please see your instructor. You will be required

- . - to write a Fortran program making use of arrays:

and run it dn a computer. .
P Lon

WHAT NEXT? Handling arrays\in the problems in this unit has been

rather cumbersdme. In UNIT #10 you will learn a slmpler way of

\

-

handling arrays.

= PR s e e R (£ ST i YRR ARA U P 8 BV P S) S S Uy

UNIT #10 (COMSC) | -

TITLE: LOOPS

- RATIONALE: Oné of the great $saeté of a éomputer is the ability to

" “repeat @ set of operations time and time again. Many
applications in data procesaing and'problem solving re~ -
quire iterative procedures, that is, procedures requiyr-
ing repetition of all or parts of a program. The term
usually applied to such repetitive ogeratiéﬁs is looping
or loops. In this unit you will learn more about loop=-

ing in Fortran. You will also get a better handle on

making use of arrays in prograns,

-

OBJECTIVE: At the end of this unit you will be able to construct

Fortran program loops, using the DO statemeﬁt.
PREREQUISITES: UNIT #9 '

ACTIVITIES:

A, Sdﬁpoae chaﬁ you were given the task of writing a program
segment thét would find the sum of the elements of a onew =
dimensional array. One solution to the problem is shown in
Figure 16.1. A flowchart is shown in Figure 10.2.

ﬁotiaa that a logical IF might be used.in&tgad of the !

arithmetlc IF in li?e 5. What lbgical IF would you use?

133 “

10.1

B Al ek T T e T Ve Ty

10.2

C****t’c*ﬁ%v*i’c**ﬁ**9:**7‘(***********wﬂs****.*w&***w**

Ch¥kd% PROGRAM SEGMENT FOR SUMMING Tk
Ckk¥&% THE N ELEMENTS. OF THERARRAY A, ‘hbdok
Clkkkk USING K FOR THE COUNTER. Wik

CRARAKAARRRARAARARRRARTARARRLRIARRRRRAKRANARNAAR
Ch¥vkk INITIALIZE SUM AND COUNTER.

. 1 SUM=Q,. 0
2 Ke1
. Chdd® PERFORM THE SUMMING.
3 2 SUM=SUM+A (K) .
C¥¥%kk TNCREMENT COUNTER AND TEST IT.
4 C T KeKe)
- 5 TF(R-N)2,2,3 :

Chhdd% SUMMING COMPLETED. WRITE RESULTS.
6 3 WRITE(6,10)SUM :

Figure 10.1. Program for summing elements of an arrayg

A
o "

3 ‘ Initialize
4

.. countear
and sum

-,

Accunulate
su

. . herement
. counter
" 1s

“Tounter <
N?

Figure 10.2. Flowchart for summing elements of an array
- showing loops) '

4

ra 134 | .

e - T e - kL BT R *: P et L R SO Sy b = o Ly 2 N - S N P

e —. - j/m&.“ X B e S SN DRI ..»—.—.u.,..,;.-_-i A vtnd

' .) ” ' 10.3
Let's analysse the program segment carefully, using the

line numbers in the left margin. Lines 3 - 5 form a program

loop, that ia;Jp set of statements that are repeated. In this .

t P s

case, the loop 18 to be exacuted N times, since there are N

elements Iin the aréay to be adéed into lhe sum, After the N

8lements h;va been added, the looping is discdncinu@d; and;

in this particular program segment, the WRITE statement at \ y

1ipaz6"ig executed. "“"'_“"””“m“f“”m"' o T
Theré‘are th;ea statements altogether that control the

. -looping: linea 2, 4, and 5 of the program seément. The

three statements initialize, increment, and test the counter.

There é}e three keywords here: initialigé,~incfeme§t

and test. Don't forget them, because you will use them later.

L

.

Initiadlize, increment, test.

Fortran provides a spaciallstatemant fdr looping that
hénd;es the detaiig og.loop control‘fpr tha programmer. - This
'atatémeﬁt is the DO eﬁate@ent. ‘The three control statamenfs'
c in the program segment (lineq\z,_é, and 52=that'initialiée,_. ST
. _ . BN o .;)

increment, and test the counter can bé‘replacaa with a single .

¥ DO statement 1llustrated 1nyFiguxe 10.3. A f19§chart is shown

* N) .
in Figure 10.4. 1In the DO statement, "K=1,N,1" contains the

three control functions: C"Re1" initializes the counter to 1;

“N"»sarves as the taatfvalﬁ& (that is, as ‘long as KsN, looping

" a

. , will continue); the last "1" serves as the' increment value .

- -

- 135 Lo

TETTR T T R amEERe Ty s m— TR TR e e

S e

10. 4

e

- - - -

PROGRAM SEGMENT FOR SUMMING - .
HE N ELEMENTS OF AN ARRAY, -
UISING A DO STATEMENT. , ; -
SUM=0, 0 ’ : .
DO 2 Kel,N,1

SUMsSUM+A (K)
2 | [GONTINVE ,
{WRITE(6,10)SUM

OO0

-

o pigure 10.3. Program segment with DO | /
statement for looping. _“Q <

[d%g Initialize sum.

- Ke]
. : _ ..‘Yes K<l
o ‘ . KeK41

No

L]

Accumulate sum : [Wrice guni /

L

Figure 10.4. Flowchart for gumming N
alements of an array, using-a DO loop.
* &

10,5

(that is, K 1is incremented by one each time). The first
part of the DO statement, "D0°2," defines the range of the -
loop, consisting of the statements immedlately following

the DO statement down to and including statement number 2.

In this *particular case, the range consists of two state-
L v
ments. (The CONTINUE statement 1s actually optional in

4

this case; we could have placed the statement number 2 on .

SUM=SUMHA (K) and omitted the CONTINUE statement. The pur-
pose of CONTINUE will be discussed later.) }
When the looping is completed, that is, when K is no

longer ieas than or equal to N (K is greater than N, in

-

' ~
°
* v

4 .

other words), then the first executable statement following

the last statement in the range of the DO is executed. In

’

the example, the WRITE statement woﬁld be executed,

: The CONTINUE statement is-a'useful way to delimit the
range of a DO. It also provides a way of visually delimit- !
ing DO ranges by allowing the "body" of a DO range to be in~ °
dented from the DO and the CONTINUE statements.,

Place the following program Be?ent in parenthagized-or
indented format. Place a CONTINUE tatémént at the end of
aach'Dé loop. {(See the last pagé of this unit for the solu-
tion.)/".

. DO 17 I=1,N
DO 13 K=1,N
SUM=0. N o
DO 15 J=1,N :
15 SUM=SUM+A(I,J)*B(J,K)

.13 ¢(I,3)=5uM |
: 17 CONTINUE .

10.6

i
i
i

Refer to Activity 1 of UNIT #10 ACTIVITIES TABLE.

4

Loopin& can be -accomplished in other ways besides that of

“using the DO statement. You have geen one wvay already in

'trating‘looping without a DO statements

the eqﬁple program in Figure 10. 1 1n which a counter and
| ®

an IF gtatement were used.

SAmﬁ 106pa are. handlad more eaeily with DO statements,
such aé in the prOgram segment in Figure 10.3. But some
loops Are handled more easily by uaing a single conditional

transfér statementow~ an IF statément or a computed GO TO

_statemgnt,_for example. Let us consider a problem illus-

.Subpoae that we are to use a computer for compiling
the Dea#'a.List, and suppose that a student must have a

grnde point average of 3.0 or better in order to be on the

Dean 8 iist. Also suppose that there is one data card per

J EECE

K - C . '
.l

el

¢

10.7

student, each éf which containa a five-digit ID number in
columne 1-5, the student's classification in column 6 (1

for freshman, 2 for sophomore, 3 for junior, and 4 for
senior), and the gndde ﬁoint average in columns 7-11 (deci-
mal point punched). 1f the enrollment is very large, it
would be inconvenient to count Fﬁg cards so that the exact .
number would be knownj; it*would?b@ more convenlent to pl&d@

a ﬁsentinal“ card or a "trailler" card at the end of the data
cards aﬁd progrum the éomputer to recognize that card as the .
last é§§j. Une way to do this would be to place a caxd with
a 5 puncied in column 6, the classification column, at the
end of the data. Since\dnly 1, 2, 3, and 4 are legitimate
classificatfon codes, a 5 can be used to t&tminate the loop.
A computed GO TO {s very useful for fhis puépose.

) A program to prepare the Dean's List is shown in Figure

10.5. The flowchart is shown in Figure 10.6. This example

is similar to the problem-for self evaluation in UNIT #8.

)

C PROGRAM FOR COMPILING THE DEAN'S LIST
20 [READ(5,1) ID,KLASS,GPA

1} [FORMAT (15,11,F5.3)

GO T0{10,10,10,10,11),KLASS

11} IsTopP . -

10} {IF(GPA~3.0)20,21,21

21| WRITE(6,2) ID,GPA

2| [FORMAT (1H ,15,2X,F5.3)

GO TO 20 N 4

END '

'Eigéée 10,5, Program~loopiag controlled by a computed GO TO.

. el

1.008

Raad ID,
class,
GPA

Writé
ID and
GPA

. .) \ '
Figure 10.6. Flowchart for Dean's List problem.

H

w

thicé in the computed GO TO that‘executiog is termi-~

nated whenever the claasifiﬁation is 5, but that 1ooping
continues as XQng as the classification is 1, 2, 3, or 4,

The ccmputed GO—TO could, of course, be replaced with

A40

2

10.9

%

an IF statemdnt. For example, the arithmetic IF

. ¥,
IF(KLASS-5)10,11,11

or the logical IF

1F (KLASS .GT.4)STOP N

could be used.
Th@?éféfé'ﬂéme”alféThéfé'Wéyé of ‘checking for the last
card in this example. We cquld have used a blank card for
the trailer card and checked for a élaasification of zero or
* for an ID number of zero. (Remember that blank numeric fields
are vead as zeros wheﬁ the computer reads the data caraa.)

™

Another wa%&hould be to place a "ﬁonaensa" number, such as
9.0, in the fileld containing the gradg polint average qnd
check for that. |
The point éf this example is simply this: looping may -
be accomplished more easily in some cases without the use of
DO statements. | v
How do you decide whether to-loéé with a DO or td use
some othe;lmeans of looping? Here is a "simple rule of
' thumb'" to help you.decide:
1f the looﬁ makes use of a counter, then probably you
should use a DO,
If the looping is controlled by some condition based
on the dnput-data or some condition set by the pro-

gram, usually Eested by some conditional yranafet

statement, . then brobabiy you should not use a DO.

10.10

This rule is certainly ‘not absolute, howevar, .and should

° be apblied only as a kind of starting point.

¥

- | SELF EVALUATION: ~

A. Refer toé UNIT #10 ACTIVITIES TABLE, Activity 2.

B. Rafer to UﬁIT #10 ACTIVITIES TABLE, Activity 3.
C. Write a program segment that will find the sum of tﬁé ele~
| ments of a two-dimensional array contalning N rows and M

e e
columns. (Answer on next page.)

(

ASSESSMENT TASKS: Please see your instructor. You will be given
a problem-for which you are to comstruct a For-
tran program, making*us® of one or more DO loops,

and run 1t on a computer.

WHAT NEXT? You may go to UNIT #11 or to UNIT #13.

[

e

K - - 112

Answers to problems in the text of UNIT #10

4
' C INDENTING THE "“BODY" OF
C THE RANGE OF A DO LOOP.
C
D¢ 17 Y=1,N
DB 13 K=1,N
SER SUM=0,
- D@ 15 J=1,N
SUM=SUM+A (1,J) *B(J,X)
15 C@NTINUE
- o R L C(1,))sSUM
. 13 CENTINUE
17 CONTINUE
G SELF EVALUATION C.
¢ ASSUMEYTHAT N<11 AND THAT M<2l. ,
¢

DIMENSI@N A(10,20))
SUMMING CAN BE DONE BY ROWS OR BY COLUMNS. -
EXAMPLE OF SUMMING ACROSS ROWS.

SUM=0.0

pg 10 I=1,N

DY 11 J=1,M
SUM=SUM+A(1,J)

11 C@NTINUE
10 CONTINUE

aa

C EXAMPLE OF SUMMING DOWN COLUMNS. |
| SUM=0. 0 S
DB 12 J=1,M "
DP 13 I=1,N
© SUMs=SUMYA(I,J)
13 CONTINUE
12 C@NTINUE

© TITLE:

UNIT #11 (COMSC)

INPUT, OUTPUT, FORMATS

RATIONALE: Although the input/output discussions in UNIT #6 (COMSC)

“should provide the essaentials for raading ddta and priat=—"~~—~~"~"""

ing results on Ehe line printer, thaere are additional -

-

features that provide simplifications or capabilities
that are useful. As in UNIT #6 (COMSC), the card reader

will be used for input and the line printer will be used

-

faor output.

?

When you complete this unit you are well on your

L)

way toward being able to use Fortran as an effective

computational tool. Many of the programa.which you
develop in the remainder of ‘this course should be use-
ful to you throughout your college career. We %eel that
being able to understand and write computer proérams is

one of the wmost important skills that you can learn. It

-

is almost of the same level of importance as the ability

to communicate effectively both in oral and written form.
4
{

There 1s an appendix that summarizes FORMAT state~

3
° W

ments at the end of this unit.

OBJEC$IVES: When you finish this unit, you will be able-to construct

Fortran IV READ and WRITE statam&ntg@?gg their associat~

ad’ FORMAT statements to handle a varﬁppy of input/output

; 1alddq

Y

(73

. 11.2
. 8ltuations.
PREREQUISITES: UNIT #10 (COMSC).

ACTIVITIES: You should make use of a variety of READ, WRITE, and
. FORMAT gtatemehts in the programs required by the other
COMSC unitas, This will help you to become proficilent
in performing the tasks of reading and writing. It also
"w111”Hélb”foﬁ“ﬁo"bfgﬁﬁléhmﬁﬁd"ﬁféééhf"fééhlféwiﬁmﬁ“féhé;fm“m‘
“able form. TFurthermore, by inserting temporary WRITE
" statements at key points in your program, you should
be ablé to debug the program much faéter than by trust-
ing to lﬁck.) e
Format field descriptors covered in UNIT #6 (COMSC)
were |
£ ~ ‘ F, Hy; I, X.

Additional format field descriptors covered in this unit

are
. A, D, E, G.

Otﬁer format field descriptors (L, T, 2) exist, but wiil

not ge covered in this IPI sequence. Also covered in

this unit are input'and output of array data.

NOTE: THE MOST SIGNIFICANT DIFFERENCES IN FORTRAN

IMTLEME%?ATIONS FOR VARIOQUS MACHINES_AR@ MOST LiKELY

T0 OCCUk IN INPUT/OUTPUT PROVISIONS. In other words,

FORMAT atatéﬁents that work on one compiler may not

necessarily work on another.

Recall that input/output statements ave of the

11.3

form
READ | 1y
£) list
N WRITE (w,£) e
where "u" ia an 1/0 unit number, "£" 1s a format state=

ment number, and “list" ‘may be empty or contailn a list
_ of variable -names. FEach variable name in the list re-

quires an assoclated field descriptor of type A, I, D,

fied by "f." Literal, H, and X field descriptors ara
not associated with variable names in the list.

How arxe the fieid descriptors and the items in the
1/0 ligt coordinated? Each action of fofﬁat control
depends on information jointly ‘provided by the next ele-
ment of the input/output 1ist, if one exists, and the
next field descriptor obtained from the FORMAT statement.
If there’is an input/output list, at least one field .
descriptor other than '1;teral', H; or X must exist.
Stated more simply, i1f you tell the computer to write
or read the value associated with a variable;‘nama, then
you must provide a field descriptor for that value in

the FORMAT statement. As an example, consider the

statements written in symboiic form in the following

example, o
1. READ(S 1ll)€1,€2aﬁas€As€s,€e A ~
111 FORMAT(Sl,SX 8q,08 3/6“,4(10x 8s)) '
WRITE(S, 113)A,,2,,A sA, :

113 |- PORMAT(1HO, 4%, 28k~ 8,,7/2?62,6 5

. d4g

E, F, or G to be present in the FORMAT statemeat speci-.-

Py vy

11.4
Assume -
¢y represents a list element, ,) | -
Ay represents a list element,
6y represents a field descriptor.
Once the read statement 1s invoked, the foint action .
proceaeds as follows:
-T-uum:~_ww~Tm-~w aeti9§-$aqu@ne@m~~~umMTnnmm—list~elem@ntmu——f~imm—-mfieid-dséeriptor_mwm_mimm-nw
) R a €, ' .\ . 8, .
2 o - 5% (5 colums
o) skipped)
3? " . €, _ 5§
b E; . _63
5 \ . ‘ / (read next -
. &\\\ | | card)
6 €y | 8,
Fa 10X (10 columns
A) ' skipped) = <
8 . €g . Q Oy ‘
9 10x
10 _ g - 8
, . ,
11 - input list exhausted

Similarly, when the write statement is invoked, the

action proceeds as follows:

» \

-

=tz Z AT -, s e — s i
A [= o e it :

) ‘. ’ T 11.5]f
-— . action sQquence list element ' field descriptor
1 I ' o . *180 (double space i

befors print)

2 - \ o 4X (blanks placed

. y » . in next 4
) . . : print posl-
.+ . tions)
3 _ ' - Q?Aﬂ (inserts A=
o in next two
. . print posi-
_ -] o R e ~_tions) . . -
4 Al 61 iy d Cow
.95 | o , : // (double space
' o - before print)
- 6 A, 8, (watch this;
the left most
character to
be printed is
a carriage con-
trol character)
. I and must be 8
' _ blank)
(\ ' : :
,74; - ‘\3 . ,69 -
. 8 " A, 8,
9 Ay 8,
» 10 >\6 52
1l A, 63.
12 “ i . 1ist exhausted
NOTE: A field desgriptor must agree with the data type
of its associated vartable in the I/0 list. For example,
‘o ’ the descriptor I musf be used with an integer varilable
| namne. s) : \ . .
it) o - ' - " (
To be more speclfic, consider the statements ' .

XF

- | . 3 118

s [P - SR ' . in
. e PR P

-

11.6 , .
/ﬂ 7
REA.D(S 121) W,Y,K,J,A
121 FORMAT(FlO 3 ax,rs 4,2(3X,15)/T10. 6 F6.3,14)
&
B . -
The corresponding action sequence follows:
actionjsequence list element R field.descriptor b
=7 .
;) :
1 W " F10.3
I 2 4x
3| - | Y " ‘ ’ - ’ ’ F6.4 “
4 ‘ X
-) %
5 K s I3
6 o ' 3X
7 J LIS
i 8 - ‘ e / (advance to
o cL . R “next datg
' card)
9 | | A ' F10.6
\ IS \. ’ . *) . «
10 ’ : liet‘exha?bfed (the rest of
) PR : the field
. descriptors
. : - "are ignored)
Y “y N L3
NOTE: The field descriptors .
.] e N -
2(3X,15)
: ‘ _
, may also be written &s
I 3X,15,3X,15
\ Completa the action sequence for the following .
. Fortran statements. - ‘ _‘ B + :
\::J v _-‘ - - . ' o h- B
o N 14\9 ‘. v
. i~ 3

EEEE * ‘
TN ’ 11.7
: : ¢
ITE(6,196)1,J,A,X,P - e oW
19§ [PERMAT (1H1, 39X, L6HQUARTERLY REP@RT/ ’ -
e 13HOINCREMENT = ,15,3X,8HINDEX = ,14,
_ 14 11HAMT, EXT.» ,2F10.2,5X,9HPRYFIT = ,-
action sequence list alement © field deascriptor
. : §.
1 /\j v :
2 . o & R A
,3) \ | \ _
4 <
'3 N : i <R)
- 5
% 6
7 s
8
9 ¥ £
0 - S
11 ‘ - '
12 . . ¢ -~
’ £ °
13 ., . N 3
14 |
15 -
A aimpl-ifiec‘i flow diagram of "the interactiop se-
5 gquence between the format d,eécx:ipmrs and the I/0 list
: appears{tixi Figure 113 1. Refer to the flow diagram' and o T
. tram_elgrough_ the Bdftion sequences for some I/0 state-
,“'\ * -&&m&nts N ‘-'ithice‘ that the blogks in the dlagram are num-
v . * .i . - Q-) . . ’ . ®
¥ : - i} - -

-\) . ~'- 1) d . .) .

11.8

ey

12. & + next
field descrip-

©

¥

tor from FOR-
MAT stétemaent®:|

713,
Is ¢ a

Yeas

- - 1. A«
(:iO. Start I/O:> : »{ NOXt element
from 1/0
1 list
14. Terminate process-
ing’ of current record B
and inltiate processing |
T of pew recoxd.
AN
16. Perfbrm the action

specified }by the field
degcriptor.

*Left parentheses and

. commas are ilgnorad as
field descriptors.

Yes

"/"?

: Is ¢ a field
descriptor of type
"literal', H,
Q8 X7 TR

17.
Is A

é%. Finish%E}*

21. Scan the FOR-
MAY statement from
right to left to
the first left = |l
parenthesis. In-
clude the repeti-~
tion factor, if
on& is present.

&

Is ¢
the final

right paren-
thesis of th
FORMAT

23: Perform the
1/0 conversion as
specified by the
field descriptor.

.

Figure 11.1, Flow diagram of the - .
interaction sequence between the '
format- descriptors and the I/0

lisg, - o

Y

e

Yes

empty?

No

19,
Is ¢ a _
ll) ll?

Yes

No

22,
Is & a _
field descriptor
of type A, I, D, E,
F, or G?

e o A T T & T T et im -

24, Something's wrong!
You're not supposed to
get to here from there!

PRSI

|

11.9

bered, 8o you can Indicate an action sequence with a

series of numbers. Here's an example:

WRITE(6,5)A |
FORMAT (1HO,F3.1)

The action sequence is

i

10 12 11

11 13 12

12 15 13

13" 17 15

15 - 19 17

16 - 22 18
‘ 23

Here's another example:

*

WRITE(6,6) AN ' B
FORMAT (' LTABLE 5'/(1H0,F5.1)) .

2

The action sequence is) T

10 12 12 12 11 12 12 12 11
11 13 13 13 12 13 13 13 12

12 .14 15 18 13 15 15 15 13 .
13 16 17 15 17 16 17 15
15 19 17 19 19 17
16 . 22 19 20 22 18
' 23 20 21 23

Now, 'you try some. Complete the action sequence
for each dféthe following three examples, ‘using the

. - “ >
flow diagram in Figure 11.1.

. -

s ﬂ

11.10
1.
WRITE(6,7) A
711 FORMAT (1HO,FS.1,1HX)
2.
WRITE(6,8) A
8| FORMAT(LHO,F5.1//'0THAT 1S ALL.') '
3
Iy
164
153

1

f) S e e a

READ(5,9)A,B,C,D

FORMAT (2(5X,F5.1),F11.4)

ot

Correct action sequences are shown below:

1.

10

11
12

13

15
16

10

11

12
13
15
16

. 10

11
12

13

15

16

12
13

15

17
19
22
23

12
13
15
17
19
22
23

12
13
15
17
19
22
23

11
12
13
15
16

11
12
13

14

11
12
13

15

16

12
13
15
17
18

12
13

14

12
13
15
17
19

22

23

12
13
15
16

1]

12°

13

15

17
19
22
23

12
13
15
17
18

11

.12

13
13
17
19
20
21

12

13
15
16

12
13
15
17
19

22.

23

11
12
"13
15
16

12
1%
15
17
18

11.11

NOTE: In this case, the 2(5X,F5.1) in the FORMAT was
treated simply as 5X,F5.1,5X,F5.1, thus deleting the

inner parentheses,.

Array input/output is handled in much ﬁhe same way as
nonarray input/output. It is possible to reduce the number
of entries in thesinput/output list by using "implied DO's";
however, this can b time consuming s_o__Fhé_f;__ail_npliﬁi_ca;i,qgg__
in writing the 1/0 statement must be welighed against the .
accompanying increase in computer execution time. An example
of a list with an implied DO follows. 4

READ(S 1LLK,L, ((A(1,J),T=1,K,2) ,M(J,3),J=1,L)

In this example the elements updated by the READ are

K,L, A(1,1),A(3,1),A(5,1), ..., A(k,1),M(1,3),
A(1,2),A(3,2),A(5,2), +.., A(k,2),M(2,3),

A(1,L),A(3,L),A(5,L), ..., A(k,L),M(L,3)

. where k 1s either K or K-1, whichever is odd. The FORMAT

statement assoclated with this READ statement must bé such
that the fleld descriptors agree with- the data type of
corresponding Vafiabies in the 1/0 list.,

NOTE: ‘Indeg variables for implied DO's (I & J in the

example above) sre modified just as index variables of DO
statements. Consaquentl& the“valué-appeéring in an implied
DO index varilable will be different agzer éhe 1/0 statement
1s executed froﬁ what it was before the statement was execut-

V4 A\
ed,

11.13

LY
&

QUEBTION: What is an appropriate FORMAT statement for
. ' the above READ statement if K, L, M are of

integer type and A is real type? Assume that

K=5 and L=3.

“

o

One gorrect FORMAT using arbitrary field widths is

shown belbw:

111} | FORMAT(215/(3F5.1,16))

:

A ’ v

In this FORMAT, the values of K apd L huet be punched on the
first data cafd; and three values of the array A and one value

of the. array M are plaged on each of the subBequent data cards.

”

Refer .to Activity 1, UNIT #11 ACTIVITIES TABLE.
g f_

Swon
»

SELF . BVALUATION: -
A, Write a program segment that will read in the array punched

ou these data cards, using only one READ statement and one

)

FORMAT statement. (See pages 11.16 and 11.17 for solutions.)

| 10111011112022222222 333333333344 4AA4AAAASIS 555555 5566666866667 7777117778
123456789011 23456 7890(L 2343678901 2345678901234 5678901234 56 7890/1. 23456789 2343 7890
20 '

1 16.0
}

003‘ 1.2 “306 Slu 1a 81'

21.% 78.G~31.1 30,5
/7_ ‘“17-0 18.0 OQ 20. l
\ R !

19. .4.

s

11.14

—) ’ B. Write a program segment that will write out the axray
<

described in 1 above five elementa per lin®d on every other {§

line (double-spaced).

C. Write a program segment that will write out the array in

- ‘l above one element per line single=s?aced in reverse order

“ in which tﬁay waere read in,

T D. The students in a particular course took an examination on
which the scores were based on 100 points. Write a Fortran
program that can handle up to 1000 scores and will count the
number of students who made scores greater than the average.

. _(The average 1s found by dividing the total of the scores by

the number of scores.)

The scores are punched in 16 fields of five columns each
with decimal points punched. The first data card contains
-only the number of students who took the test, right-justi-.

- _ ~ fied in columns 1-5. Use only one READ statement in the

program.
.’\ -

Use a DATA initialization statement for initializing running
‘ .

sums and counters.

The output is to be placed at the top of a new page, must

look éxéctli'like that shown below, and must be produced

with only one WRITE statement,

-~

(Small x's indicate numeric fields.)

15y

*

) T

111113111122222222223333333333444444444045
12345678901234567890123456789012345678901234567890
AVERAGE SCORE IS xxx.x

- NUMBER OF SCORES ABOVE AVERAGE 1S xxxx

SCORES . . -
HXX.
- XXX.
KXXK.
atc,.

~g-

E. Refer to Activity 2, UNIT #11 ACTIVITIES TABLE.

- - \
ASSESSMENT TASK: You will be asked to comstruct, debug, and document
>

a Fortran program. Contact the instructor when you

*

feel ready.

WHAT NEXT? It you haven't completed UNIT #13 (COMSC),-you should o
do so. You should start UNIT #14 (COMSC} as soon aé you
feel that you have a good grasp of UNITS #11 and 13. You

- may want to try UNIT #12 or 16 (COMSC) congurrently with.
UNIT {#14.,
When you have completed UNITS #11 and #13, you may
elect to stop, in which case you are?ﬁot eligible for a
grade higher than ™B." If you wish to try for an "A,"
f- 'then you must complete the remaining units. Discuss

this with your instructor if you wish

r

—

T e L ~ L TR~ - Bt gt S st

Solutions to problems:

A. . ‘ e Y

READ(5,1)N, (ACX), I=1,N)
1 | {FORMAT(I2/(16F5.1))

BI
WRITE(6,2) (A(I),I=1,N)
2 | {FORMAT (1H0,5F6.1)
{.
C.)
DO 3 I=1,N
Lot N~ T+1, (‘
WRITE(6,5)ATL) ~.
3 CONTINUE »
5 FORMAT(1H ,Fé.1)

L)

On some computer systems the following,progiam segment will
work, but notice that the form of the subscript is nonstandard:

-

DO 3 I=1,N o
WRITE(6,5)A (N-T+1)
3 CONTINUE
.‘_\
I ra i
) A
159 ’

4
C K [US THE GOUNTER FOR THE SCORES ABOVE TRE AVERAGE.
C SuM IS THE CUMULATIVE SUM OF THE SCORES.
C S |Is THE ARRAY OF SCORES. - .
IMENSION S(1000) '
ATA SUM,K/0.0,8/
C INRUT SECTION
READ (5,1)N, (§(J) ,y=1,N) ™
1| [FORMAT(15/ (16F5.1))
C FIND THE AVERAGE.
DO 2 J=1,N
SUM=SUMHS (J)
AVG=SUM/N | o
C COUNT THE SCORES GREATER THAN THE AVERAGE.
DO 3 J=1,N
IF(S(J)~AVG)3,3,10
10 Ke=K+1, -
3 CONTINUE
C OUNPUT SECTION
WRITE(6,4)AVG,K, (§(J3),J=1,N)
4 | [FORMAT (18H1AVERAGE SCORE 1S ,F5.1/ _
1 35HONUMBER OF SCORES ABOVE AVERAGE IS ,14/
2 7HOSCORES/ (2X,F4.0))
CALL EXIT @
LEND
#
N w).
AN . \
160

11.

= ramon et e s e c— ~ T o — CRER T e e 21 e 8 e e e e e s e ey

UNIT #11 (COMSC) APPENDIX

. FoB»Q{s

GENERAL FORM: nnnnn FORMAT (61,62, v ooy)

where nnnn 18 a statement npumber
(1 through 4 or 5 digits)

61, ooy Gk are fleld descriptors

______ . - R

THE FIELD DESCRIPTORS AND DATA TYPES TO WHICH THEY APPLY ARE:

rAw character data fields

riv integer data fields ‘

prDw.d 'real\data fields

prEw.d real data fields

prfw.d real data flelds

prGw.s .integer, real, loglcal or complex data filelds

"literal’ éransmita literal data (output)

wH | transmits literal data (output)

wX field skip on input or imsert blanks on outpug-,a

r(...) group. format specification | '
vhere /

d is an unsigned integer constant specifying the number of

decimal places to the right of tzf decimal point, i.e.,
the fractional portion. ' The d ﬁ st be specified in D, E,

and F field descriptors even if it is zero: Furthermore \

- ' w must be greater than d. For I type format w = d+7.
In this case the field width w must include in addi-
tion to d, a position for a sign, a digit, a period,

an E; an exponent sign, and a two digit exponent such

ag &
10, xxxxxxEice

p is optional and represents a scale factor designator

of the form nP where n is an unsigned or negatively

o

signed integer constant.
- ' ' ;l‘
- r is optional and is an unsgigned integer constant- used

to denote the number of times the format field descrip-

tor is to be used. If'r is omitted, the fleld descrip=-

{

tor is used only once.
'y

8 1is-an unsigned integer constant specifying the number

e

”

! \
. of significant digits. .

v

-

w is an unsigned nonzero integer constant that specifies

the width of the field.

{

B it e L TR NP

11.19

(P

TITLE: ARITHMETIC CONCEPTS . L e

RATIONALE;

OBJECTIVES:
4(’\

a

;"\

n

UNIT #12 (COMSC) ' -~

v

It {s safe to say that more arithmetic is done im¥an

hour on the installed compﬁters today than has been

- =
done by all of mankind since man began to count. Yef“s

*

N

the type of arithmetic that we study in school satisfies

quite different propertiag from the type of arithmetic
performed by computers. The results of a computer com-
putation are usuglly close toxthose of a hand computa-
tion; hdwever, in a specific case in which an author
reported, "The numerice}iintégration in this'study

took about qne'an&vone half years with twenfy working
hours every week with a-considerablé amount of work\ﬁnd

endurances,"” the resulting hand calculation turned out
to be totally incofrecﬁl In this unit different types

of arithmetic computation will be investigated.

Determine the number of significant digits in an
expression, given the number of significant digits
in each element of the expression.

Describe intege¥ arithmetic, floating point
-

12.1

fom
s
o

! m

Ih T

12.2 | -

e SN - arithmetic, and fixed point nrithmetic ag implaw
- emy <

ment ed on digital cowputers.

Describe the asaociative, commutative, and

*

diatributive laws of arithmetic and th@ir rela-

. tionships to arichmétic performed on digital com-

A}
~ / . e L]

. putars. 5xxgxd///' . _
] .
_ Deécribe e in arithmetic due to rounding,

truncation, loas of significant digits, conversion

from decimal to binary, and convaréion from binary

to,decimal,

.
.

PREREQUISITES: UNITS 11 and 13, Math units on asgociative, commuta-
- . $ ¥
tive, and distributive laws of arithmetic.

[

\

ACTIVITIES: - Read the following material and perform the tasks

indicated, Answers are at the end‘of the unit,

. I

. < Accuracy 1is measured in terms of‘the number of
significhnt diglta which a number containa. Any one
of the digits 1, ﬁ@ 3, 4 3, 6, 7, B, 9 48 & signifiw
cant digit. The digit 0 is sometimes, but not always
. | gsignificant. Three cases are possible for the digit
0. ‘ S | .
i

(a) Zeros aré to the left of all.other non-2ero

2

<

: T digits. Here the zero is used ‘to @ndicate |
the decimal pointhané is'ﬁogggignifiggnt.
For example, in .00123, the leftmost two |

zeros are not significant; rather they serve

léq-'

[[
1

) | 12.3

as position holders for the decimal point.
(b) Zeros are Eecween aignifiéaut digits, In
‘this case the zeros are considered to bé

gignificant. In the pﬁﬁbep 1002, the two

el

i zergos are significant.

)

ﬁ' ' (c) Zeros lie to the 'right of non-zero digits

‘of a number as, for example, in the number
123400. The zeros may‘or méy not beiéigni—
ficant. The reéommended nmtatién 1f the

v C - digits are not significant 1s to write the

number as '

1234 x 102,
If the first zero were significant this

5 | o :

. . | should be written as
12340 x 30,

@

. The number of significant digits in each of the follow-

£

ing numbers is four: 1234, 1002, .01234, 3210 x 10°,

N 11000 x 10, _ R Y

How many significant digits are”iﬂ each of the

3

- . ‘ following numbers?

) . (12;{> a. 1.234 - £ 125400 x 108
! d IR b, 1.005 ‘ . 8. 1000 % 1073
T e e000 . e b 0
- o d.o00012 - : 4
) o e .000100 | - {
e 155 |

12.A

A number is asald to be corract to p significant digits if
its value is correct to within one half unit (of the given base)
in the least significant position. For example, if the number

1234 {s correct to four significant digits, it is understood

“that the numbar lies between 1233.5 and 1234.5. An alternate

expreasion for this is 1234 % 0.5, If 780 x 105'15 correct to °
tbreg aigpifigantudigita,.it lies between 77950000-apd 78050000,
Frequently,'nﬁmbers which are known to many significant

digits must be reduced to a\suitabie 1ength for computational
iurposes. A process called rounding. is used to rﬁduce such a
;umber top significaut digits; On é'computer this operation
is éerforméd by adding (s;bcracting) one half of the base in
the'position (wtl) {f the number is positive (negative) and then
retaining the resultant p significant digits. The following

examples illustrate this procedure for base 10 numbers rounded

to 4 significant digits.

12,3456
+00. 005 .
12.35[06 = 12.35 correct to four significant
digits
« 98764
. 00005 . :
. 987619 "2 ,9876 correct to four significant

digits

(12.2)

12.5
b
-12.3456
-00.005 _
-12 .3 5'0 6 = =12.35 correct to four signif-
, . lcant digits
- . 98764
"'tOOQOS
- .9876]9 I -.,9876 correct to four signif-

icant digits

This procedﬁre produces slightly different distribution
‘of results relative to the manual procedure of rounding.
The manual procedure doés not round if the digit im the
nth aignificant position is even and the digit in the
position (n+l) is a 5. >

Examples .of the manual procedure are

12,345 = 12.34 correct to four significant
digits’
12.355 = 12.36 correct to four significant

digits

Round by both the mapual and computef based methods

b

each of the foilowingwﬁﬁmbers to 5 sigﬁificant digits.

mhnual ‘ computer based
a. 3.1415926
b. 2.71828
c. 4679.25
d. 4679.35 | ' . »
€. a4679.25 '
£, ~4679.35 | | L

S

12.6

To determine the number of significant digits resulting

\
" ‘from the evaluation df an arithmaetic expression, given the num-

ber of asignificant digits in each alement of the expression, it
L]
1s necessary to establish some rules governing significant digit

arithmetic. These are given under the headings addition, sub-

traction, multiplication, and division below.

«”

Addition. When adding two positive or two negative

numbers, there 18 no losg of significéuce
when u;rounded operands are used. In some

i cases tha result may have one more sighifi~
cant digit than either of the operahds. |
For example, aupgase 1536.2 and 7428.9

- were rounded to 1536 and 7429 respective-

ly. The additions of the younded and un-

- o

'
rounded numbers are
)

rounded : unroundead

4536 4536.2

. 7429 _ 7428.9

_ ;L i 11965 _ ~ 11965.1

’
BN

both of which are correct to 5 signi-
’ficant digits. The followihg case
illustrates a loss of significance

when rounded operands are used:

° >

| 15'8 .

-

I

(12.3)

rounded unrounded
1232 1231.5 '
6746 6745.5
7978 &

71977.0

since the result is correct to.threa significant
-digite instead-of -four -significant-digits which

each operand contained. \

\

How frequently is such a loss likely to ocecur?

!

When one of thé operands contains fewer signif-
icant digits than the other, the operend with the

greater number’of.places to the right of the decimal

\must be rounded to conform to the other operand.

For example, in order to add the two numbers

12.345 and 2345.6, it is meaninglass to*féfgin more

A

than one digit to the wight of the decimal point
bacause the second number is aecurate only one place

to the right of the decimal point. 'The sum is given

4

by s ¢ - ’ h] ‘é‘-

12.7

Tt . PTECERAE S
N 4

st = it e T e Tl L A e ” . ot e — =

12.8 . /

. \
Subtraction. When a subtraction occury (by either
¥

adding.a poasitive number té/gﬁnagativa numbex
or by azbtracting a positive number from a

s positive number), a complete loss of signifi«‘ _
cance may occur. Usually each case must be .
considered indep dentlyu!'Aa"an example
consider the ﬁuﬁzgrs 12345.6 and 12345.4

which are rounded to.123&6 and 12345. The

results of rounded and unrounded subtraction

are
rounded . unrourided
~. 12346 12345 .6
- 12345 ~ 12345.4
00001 00000. 2

Although the two are rounded correctly to -
3 significant digits, the result has no
significant‘digité, 1.ef, the 1 1§ off by
a full unit. It 18 more likely that a loss
of significanceioccurs, but not a compléte
loss of signifiéance. The best stfétegy
{ 18 to try to arrange the cémputation 80
that subtraétions.do not occur. As discuss-
ed earlier in ﬁNIT #11 (COMSC), oﬁa real

ibot of the quadratic equation should be

constructed as

J . ' -1 ?})‘

" A

12.9

-b + Vb? - 4.4.c

X, = if -b s positive
2a .
or as
' V2
Xy = ~b - Zb ~ 4-ac if -b 18 negative.
a

The other root is determined by_récdgnizing that
X, %, = c/a

and hence

Thus there is no subtraction in detérmining fhe
root. If both a and ¢ are positive, a loss of
significance definitely will ;ccur in the compu- .
tation of the discriminant. This loss may be

reduced 1f b? - 4ac is computed to as high a

- number of significant digits as poséible. This

is called double or multiple precision and will
be discussed subsequently. Double precision is
another strategy for reduciné the loss of signif-~

icanca.

I el |

12.10

“d

Multiplication. Up to two d%%nificant digits way be lost
NS Y T, Wb L]

-

Divigion.

(12.4)

in a multiblication. The product of
921.2 and 102.4 each rounded to three
significant digits compared with the un-

rounded numbers provides an example.
! -

rounded / unrounded
QAL e gLy e e e
102 102.4
1842 36848 .
9210 18414
93942 A 92120
94329.88

Although the multiplier and multiplicand
are correct to thre@.aignificang digita;._
the_producg differs by 6 in thﬁ/third

_position from the left or by 0;6 in the

second position from the left. That is,

/
there is only one significant/@igit in
the product, even though both the multi-

plier and multiplicand weré correct to

three significant digits.

ﬁp to two significantidigits nay bevlost.in
a division. Consider ;he quotient of 1763.4
by 1761.6 with both dividend and divisor
rounded to four significant digits each,
How many digits are significant in the |

rounded quotient?

A2

' “eny

L

W

12,11

How many significgnt digits result if each

oparand in the expression
R = (A~R+C)¥DAE

is rounded to 3 significant diglts 1if .

' ' A = 1432.7 D = 123.4
' i

B = ?32.4 J E = 987.6
C = 341,62

/"

£ .
¢
. @
Rrounded_ﬁ Runrounded

aumber of significant digits’

73

Y
. :
v . . ,

<

12.12

Integer arithmetic as implemented on digital computersa
assumes that the radix {(decimal, binary, octal, hexadecimal,

atc.) point is on the right of a fixed size number. The fix-

~ ed number is called a word and might be 10 decimal digits or

-

32 binary diglits or 36 binary digits or some other size.

Addition and subtraction are performed .using one word. Multd-

plication and division require two words, but are subsequently

" reduced to one word. Consider a decimal“machine in whicﬁ a

word consists of two digits.

2 3 .
The sum or difference is
+ 4 | 7 generated in one word.
710
21 3 ({
X 4 7 The product raqﬁires two A
- words . . i
(
1]0 |8f11°
) The dividend
- - requires two
0|1 (6] 9 3 1721 +~ 11141 0] 1] words, the
' / B divisor re-
/ remainder quires one
quotient woxrd. The
. _ s quotient ig
in the left-
most word,
the remainder
. 18 in the
1 a .« rightmost word
. "1 : after division..

P

W

\,

12,13
f

The result after diﬁiaion fs not rounded. The remalnder occurs
in one of .the words and requires special manlpulation if it is to be
utilized further in the fepreaentation of the quotient. Instructions
on the computer make it easy to select the rightmoset wor& or the left-
most word of such é paixr of words.

In floating point arithmetic, part of the word refers to the
exponent (or power of the bases and the rest of the word gpﬁgiaté
éf significant digits: Suﬁpéaé our computef has'4-digit degimal
words with a plus or minus sigh. Suppose floating poin£ numbers

have the fiorm

[

J‘T”-‘i e d, .d, dy. | \

' 4
where e stands for the exponent and the numbers in d,, d,, and dy

make up the mantissa or the actual digits of the numbgr.~.Exponents
may range between.O and 9 in a one digit fiela. If the number 5 is
uéed to représent an exponent of (0, a one;digit field qan be used to
represeht exponents between -5 and 4. Such a representatiﬁn ie‘.
térmed an 'excess 5°' represanta;ion. It allows positive numbers

Ao

Lo represent negative exponénts. The location of the decimal point

relative to the digité*ddd (the subscript has been dropped temporarily)

Is giyen by the following table. o
-~ e exponexit decimal point
. T .

9 4 dddo.

8 -3 ' ddd.

7 2 , . - dd.d

6 1 d.dd

3 0 »ddd

4 -1 . ,0ddd

3 ~2 . 00ddd

x 3 L3, _ .000add
1 =i +0000ddd

0. -3 B . +00000ddd

175

= . R e By s aeaa s ms = Rt ea 2 e S T e B er it s
e LT L e 3 e E

.

-

.

TR Thate T SEEATSE A T T et R e s s s i =S - R L e = = — P e = e b g e

. Sp

We require that after all floating point computations

d1 is non-zero, unless e, dx’ dé,

da are all zero.
_The exponent e is a power of’lo. To multiply

two numbers, one multiplieés the mantiaaaaz and sub-

N | tracts 5 érqm the sum of tpg two exponents, per?apa
making -a corraection to force d, of the résult to he

non-zero. For example, the computatiébn of 3 x"2 in

this floating point format is carried out as

/) ‘ t) e = 6+6~5-~T*})

0f x t6r2j0fo0) .~ p710}6]o] » |6]6]o

X ?’”E%\

- In this example, di is zéro; consequently, an automatic
left shift of 1 occurs. A left shift of 1 is equiva-
kent to mdltiplying by 10; thus, the_gxponent ﬁhat be
reducéd by 1 to retain the proper valdbe.

‘The computation of 8 x 7 does not require a fixup

shift to place a non-zero digit into the d -position.

Since two three digit opexands can generate a-six»
_ digit prdddbt,.eithér two or three of the six digits are
lost in a singlé precision mu}tiplyf No rouﬂding ocecurs.,
In a double préqisién multiply, all six digits would be

retained.

[y

-]

L

- S | l?}£$°

- A S s e 4T s £ St o Ao e KT e B AT e YA
- e amd il e 7 e e Lo b i T e o . ¥

|

12.15

N - Write each of the following numbers as a floating

point number in the format just described.

(12.6) a. .67 d. ~36.2 4
| b. .000987 . *a. .02
L c. 104000 _ . . fe *"-'(_)000763 L o S

’

Indicate what the results would be in single precision

. - floating point format for] v

(12.7) a. | 4.67 X (~36.2) .
o b. 104000 % (~.0000763) L
c. ~36.2 + 4.67 | e
d. .02 + .000987 L
e 1040.00 + .02 o

™~ v f.' . -000987 X (“’o 0000763)

On the 360/65,’fi0ating point arithmetic -is used for
ar;gﬂgetic of type.REAL. Two formats ;xist, single
precision and double precision. A single pfecisién
floating point number is 32 bits in length and con-~
sists of a sign bit, 7 bits‘for the gxponent, and 24

bitsg for the fraction.

t] exp fraction
0 1 8 '

Simgie precision floating point representation

<

 ; R E | 177

12,16

"Excess 64" 1s another designation for the bias of

~

A
The fraction 18 in binaryﬁgthe exponent reprasents

Q

powers of 16. A bilas of 6&10 sarves the game pur-.

pose as the bilas of 5 in the discusslona above.

N

64. The binary representation of 64 is

" 1000060, : 64y, = 4015 . ‘
An exponent of 65,9 | 7 o

1000001, = 65,5 = 41,¢
indicates that the fractional part is te be multiplied
by 16'. An ‘exponent of 62 indicates, that the fractional
part lsgﬁo be—mult}plied by 16'3, etc., Double precision
floating point numbers on the 360/65 use two words with
" the. fraction part being 56 bits in length. _
e o o LI
. 7 . 3 , 7 63 L
1 | exp ' .

O 1. -n‘B . 32) . ‘ @ ¢ N

B R v

Double precision floating point repreéentation -

Although ity is not difficult, we shall forego calculating

in floatihg point arithmetic for the 360,

A

4

- e
L4
-
L]
. ¥
.
~
«
&
. A
-'
-
&
L3
. [
-*
-]
3 n
l
L \ 2
Iy
&
¥
¥
L -
o
d L]
¢
i
0 .
q .
K]
' 3
H
.

In mathematics a great deal of time 1s spent

dlscussing associative, commutative, and distributive

propertiea of arithmetic. To remind you of these

, .
properties we ligt them below.

v Associative property (grouping property)
Addition . . {(atb)+c = at+(bic)
. . Multiplicafionq (a-b)-c = a-(b-c)
. . | ,
Commutative property (ordering property)
. L -
" Addition .‘ - *atb = b+a
Muliiplicqfion a*b = b.a
" Distributiye property - | .

n

(d&th)-c = a-c + b-c
ac(QjE) = a-b+ a-c .

k4

.On a digital vomputer; the commutative property
holds (any truncation that. occurs will occur independent

”

of the order of the operands); hqwever,\the assoc%ative

and' distributive properfiés_need-pot hold. The t:hree:,Lr
. ; " ‘ o, .

e

B : . . .
digitsfloating point repregentation ‘used earlier.illus-
triates thi% well: . .

A
<

. t]e d,d,d, - -

_'Single'pfeéision floating point format .

. ~ <€
*) “ 2 i I-; .
a Y .
. .l\‘\ ’5(. '
. LY -
. - [v
? ®
] . » v
3 ‘.'/',.J > 2 °
€ * o
P & ¥
» . *
o EEN LZ

AT G o e W T, R et (1 e 3

B o L SN

12.17

Gt = SR T AR Al e =

12.18
If the values a, b, and ¢ were
a = 5670.
b = -5670. |) .
c = ,000987
& then
\-
f (atb)+c = .000987 = |j+} 2|9 8 7
.
. and .
at(btc) = 000 = |+[0]0 0 ©
. i Thus 5
. (atb)+c # a+(b+c).
. Determine numbers a, b, and ¢ for which
. (atb)- cg# a.c + b-¢
[: , {f thé arithmetic is dé‘i\‘é‘tﬂ"’aur digit floating
boint fépresent@tion. ‘
(12.8) a. a= | . d. (ath)ec = .
b.,. b= ' : , Ee_ a-¢c + b-¢ =
N . : \
» G c =
' “ - l 18{)
AN ’) 1 .
r \

. . . 12.19

Determine -numbers a, b, and ¢ for which

a-(b-¢) ¢ (ab)-c

(12.9) a. a = d. a-(b.¢) =

by, b= a. (a-b)-c = _ /

it the arithmetic is done in the 3 digit floating point

representation.

NOTE: 99.999X OF THE ARITHMETIC DONE TODAY DOES
NOT SATISFY THE ASSOCIATIVE OR DISTRIBUTIVE

PROPERTIES.

-

It should be obvious from these examples that the order

of operands may produce some error in a computation,

Before yoﬁ get the idea that things are really
. 3
ke — bad, the computers are almost associative (aa) and

¥/ almost distributive (ad) enoﬁgh so that reasonable

reéults occur. . It is unlikely that computers ever
will be associative or distributive. (Why?) Conse-
%

quently, in order to establish a degree of harmony with

mathematics an aa~ad system must be defined mathematfgllry.

° . Whe knows, you just might get involved in-such a project.
/ . .) » ‘
& ' A . N
”
LS ° .

N
’

12.20

L)

Minor numerical discrepancies hay take place
during input/output. Numbers represe ted iﬁ ba;;
10 must ?e convertdd to binary beforq7computationﬂ
occur and results must be converted froﬁ binary.;o

' Qecimal for printing. ﬁxact frnct;pnal represen-
tations in decimal do not necessarily have exact ‘ ‘
fra%tional rapresentations in binary; conaéquently,

an error occurs when a converted value 1s trquated

- to the word size of the machine. For examplé,
(.l)lﬁ.ﬁ.(.0001@0010001000100010001)2

- — That 1s, 1/10Idoea not have a terminating binary
fraction expansion and hence has to be trunéatea to .

~the nu&ber of bits in a word, The frgction 1/2, on
the other haAd, has an exact binary repreaéntagion,
namely, (.1) s The fraction 1/3 hgs.both a non-ter-
minat ing decimal expansion and a non-termlinating
binary expanslon. Errors which occur becaqéerf-the
requirement'for different bases aré usually not
significant: Infrequently special programming may .

be fequired to avoid a truncatioh problem in the

o ' - conversion from one base to another - but only in-
frequently. ' . .
, - »
W ey p oo, ot e o o v, . . L
, . . . B o
-’ “) hi
s -
X oy e i
! . - w
¢ \" , * T -
v - §- . -

-~

12.21

L% 3 . - L]

‘Concluysion. In the preceding discussion wa have avoided actual

details .of how various computora handle arithmetic operations.

jCDmputers mav differ markedly in this regard. The same program
w ' ' : - ’ .
run on different computers may possibly produce slightly different

numéric results, especially if several signiflcant figures are

"f@quirﬁd,in the regults, B B T o o e
i . - - T
The.,axerc¢ises .in th{s‘unit are Intended to demounstrate to you

-

that- numbers are not néceasarily"what they appear to be andl that

* . .) "
whether numbers are or.are not rounded before calculations generally . e T

F]

affects resuylts.

-

Generally computers .do not round results of arithm&tié\gpera~

tions, but rather trunéagf the results to the sﬁeclfied numbér of
digits that .the computer ié destgned té hardle. .Aﬁ'examplé of how ‘
¥ - - : .
thia-migﬁe aftect results is foqu‘in a calcuiﬁtion that involves ,
‘::;;ral divis;gn steps, iq which tpa'rémainder is ‘lost each time. ’

The absolute value of the final result will be expected to- be
. o . ST

smaller than 1f"roumding'based on the magnityde Qf*the remainder

could have been performged. For example, suppose we wanted to
,) \ b , L4 . N .
"evaluate ‘ _ . K .

t
L]

to three significant digits with truncation of digits beyond three. .

\

4

' The result "ig . o . » ., o

8043 4 5.2 4 1.54 42,27 = 17,45 » 17.4
n '

bt

Iml

[3

o L

il et

T b - IR TR T

12.22

Rounding gives . _*‘

L

8063 4 5.21 4+ 1.54 + 2,28 = 17.46 + 17.5...

If the fractioms containing the remainders are included, then the

result is
_— 17.47 » 17.5.)
. /’ -
- You can suoe thﬂt Lha error accumulates a8 morg operationa are
performed - - : :

RS : . .
What conclusions can we draw? There are many possgible; here

& e

are a few;

L

-

© &, In general,)::7 should organize calculations in 'a program = -

g0 that the g

formed is minimized., . o : e

.
- - r 9 - ¢ .

ber of ggithmetic operations that are per-

b. Avoid qituations in g-program- in which two quannitiea of

sim{lar magnitude are qubtragted, resulting Lﬂ 1@38 of L

. - en. - A
twe e - LRI IRCL N
-y . o . -

significant digits. T B

- Q _'. -

¢. In general, you shOuld arrange operations’ that are;especially
prong€ to loss of aignificant digita (subtraction and division}

af/'
30 that they occur 1a3t or near the end of a series of cal-

°

culations. T . ' ' - ‘

- L.
<

ki

" ; o A

Check them by hand,- if possible, with several sets of trial
data. ., Additional care-is also required because a program .
will not'ﬁecéssérily produce correct results with allvéaga

)

. : . e
" just because: it does for some data. \)

» o .
oo . ‘. -
@ . N
o
@
o < N
-~
. R . @
- v » n “ .
L o -
. L “o ©
Al "o
. ye
.’ - hdied ° o
L,
' %, - : T
I) i
. o “ ' c ° oo

. — T " B iAo LS a e R s LI e = e 220

Be sure that results glven by the computer are reasonable:f“;;f?

A
SELF. ABSESSMENT: If you have worked through the examples in the
e X matarial, then you should have assessed your

1

prograss alyeady. Check your angwers with those

-

given on the next page. -

ASSESSMENT TASK: Please see your instructor. You will be required -
~ to apply the rules on rounding, the typea of = .

arithmetic, etc., as spacified in the objectives.

WHAT NEXT? You should complete UNITS 14 and 16 before you can begin’

UNIT 17. ' ' .

- - \
~ S 4 . -
L]
IS
h »
»
3 » .
- 4 .
. \
L] -
1 - i -
4.
. - -
.
\5:' N o .
. ~ . .
.on !
o L
P L Y
¢ -«
'y
. . ¥
1 - Y .
. » L]
»
' - LS ‘%&.
' B .
. . « & e . T N
¢ .
2 B s a: e > -
-~ - . - ‘.' - "
! R B
; EEY)
. = -) —
. . . v
. - . 0
P To vy § i - *
° ST, - v -~
< ¥ et . ° b - -

12.24

& - -

Solutions to problems in UNIT #12:
(12.1) a. & f. 6 M\
b. 4 g 4
c 3 h, . 1
d. 2 ¢ k
— e, 3 o
. AN
? . o
(12.2) . manual N computer based '
- a. 3.1416 7 3.1416
- b. 2.7183 _ 2,7183
C 4679.2 4679.3
t a4, 46794 L 4679.4 T
< . "~ o - .
, ce. -4679.2) ~4679.3
. . RS
f. -4679.4 =4679.4 _— B .
(12.3) The diglt in the position involved in the vounding nust
o . contain 5 for each operand. Assuming that the digits 0 :
to 9 are equally likely. candidates for this digit posi- _ ¢

tion, there is 1 chance in 10 for each operand or 1 chapce
in 100 that such a loss will occur.

"

(12.4) 3 - | | : L - |
(12.5) Rrouf&d - 41682732 Runrnded™ 416697356928 L
& numbe; of significaﬁé digits w 2
(12.6) a: T L7
’ b ev +4200 ~° .
g "¢, cannot be reéresentad 'f.* ~1763 .
‘)a - N .) , .

[Aruiroc rovisaay enc IR
Lam vy
s,
N

. . >; j
i ° ~ 12.25
‘ (12.7) a. -8169
b. cannot be reprasented
c. =715
= d. +4210 . . »
e, +9104
f. cannot be represented
‘ -
- L) . . N -] .)
(12.8) a. 1000. d. 10
* b. =999, e. cannot be represented since
: a-c is tod large) &
. Ce].O\
o. (12.9) a. 100. ©d. 100 - (1) = 100 '
b. 100, e. cannot be represented since
. . a-b 48 too large e’
- Co -01 G\ ‘
? . -
\. ¥ '
/“ ' -
) oL 6] .
. . | \:)' . ’
\J.. A - ?‘ - * ! '
N) . . M\ &
- ‘ N - _
A -
. 18*;1 b
. . . e N !/_
: . /. .
. i - ®
< . ¢) A / ' $

LR

he 3

\Wiﬁ

UNIT #13 (COMSC)
1.

TITLE: SUBPROGRAMS

RATIONALE:

3 v -

The writing and debugging of long programs nay
bacome quite fréstrating. But, if the programs

can be divided into shorter, simpler parts, then
both tﬁf writing and debugging caﬁ be simplified.
By using sgbprogr;ﬁ@ in Fortran, yo% ggn divide
programs into shorter and simpler segments, write
tﬁem, and débug them quite easily. This capabi%ity
alone providgs an important rationale for learning"
to use subprograms.

Another useful feature of subprogr;msuis that
they may be saved for future use with other programs.
A eubpr;gram is an independent unit Qh;ch can be
placed with any other{grogram (or subprogram) and“can
be used with that ﬁrogram§ provided 1t is properly

called. This obviates your having to write more than

one time a program that handles a particular type of
;. R .

‘task.

Subprograms are alﬁefy powerful part of Eortraﬁ

and are used wideiy Certainly your skills in the \ise

¢

of Fort an would be incowplete wiﬁhout an ability to

o

write and Yse subprograms.

Y,
\

13.1l S,.‘;?. | '

13.2

OBJECTIVE: At the end of this unit you will be able to construct

any type of subprogra? and its coxxesponding caliing
statement and to construct.a proéram using aﬁy type

of subprogran.
-

PREREQUISITES: UNIT #10 (COMSC).

SUBOBJECTIVE 1: Identify the four elements of the concept of °

subprograms.

()

ACTIVITIES:

34

A. . Here are six numbers: 2.5, 8.1, -5.2, 0.0, 4.3,

~~%,6. Find the average of these numbers and

. In order ({

to work the problem you had to go aslde to the

write it in this blank:

margin or to scratch paper for .a work area. You,

in éffact, transferxred thé numbers to ihh‘work

area, performed the calculations that were re- .
“quired, and then transferred the answer back to
the blank -line where you Qére told co~piace the
.answer. What you just did is analogous to what
happens\when'a s&%érogrnm is used in‘FortqﬁnZ
Let's 1nyestigate further what yoq.did.

In the problem given to you above, "Here - oy

are six numbers, TFind the average" the
LA TN ’

ey word 1s°avexq&m."This word tells you which s

Isg . o

[

13.3

procedure to pull from the atored information
in your mind. I« othet words, the word averago
elicits the procedure that says to add the num-

bers togéther and divide by the number of items.

v

~The procedure has a name. Fortran .subprograms

I

also have names. In order to use a subprogram,

you must refer to it by its Q?me in a talling;

" statement, about which you wiii\learn'more short~

A

ly. | ' N
The name average tells you whgl‘combutatioﬁal
procedure to follow, but you cannot find the aver—
% : .

age of some numbéra unless you have those nu@bers.
Se the second thing yoﬁ did was to traﬁéfer the
numbers whose average you were to find to a'worka
area.f_81milarly, a Fortran éalling statement sends
the data items sp?cified'innthe cai}ing statement
to the éﬁbprogram (analogous to the'work areé).
The items sent are called arguments. \)

" Once the numbers weré in the work area, then

you could actually execute the "average" procedure

and find the average. In’the same way,-a’?ortran'

' subpgogram.ia exaculed, performing whatever task

’

‘it 1s programmed to do.

B .Fﬁpally, when you had calculated ghe_average'

[

-

"
-+

-

- Lgn .
. (' l l“

s

LN

Ly

-

Fy

IR & e

e i i

N e R —-.

| 4
. 13.4 .
* A
- . ’ in the work area, then you transferred the result
. to the place where you were instructed to put it.
- Thén you proceaded through the material. Similar~)
-4
ly, a Fortran subprogram sends the result (or
) r i
< ' : resultq) to the maln program &ﬂé\?EtﬂfﬂS control - u-ﬁ\f-
-to th main program, which allows’ the computer to .)
=) .
. . : procged through thé rest of the program.
) « S Let's féviewhthe four elements of* the concep#s
- C 7 of subprograms and the corresponding elements of»_"
;) s _
- .solving the problem to find the average of six
- ' numbers. .
.-t Average Problem _Fortran Subprograms .
N " 1. The name average" tells the . 1. The name of the subpro-
\ , | “ student which of his mentgl gram tells the computer
y . . procedures to use. Invoking which subprogram to use.
\ : the name calls for the pro- T Invoking th? name calls
|) ‘cedure. '] > the subprogkam.
| _ . .
! 2. The student transfers the six 2. The -data to beused in’
\ pumbers to the work area _ the subprogam are -sent
! 5 (scratch paper or margin) so to the subprogram through
i o . . that he will have numbers for the argument list.
' ‘ calculating. . ; ')
- 3, ' The actual calculation of 3. The instructions in the
: * the average 'is performed. 2% subgyogram are executed.
4., The resulps of the calcu- - 4. The results of the subpro-
lation are transferred gram that has been exe-
_ back to the blank line on cuted are returnéd Lo
T a the page. - " . the main program,

*

i e riacayend

o - T RR s T e o enems s = 4 = Rt vt == = - it e“‘m"-’-i'x_""'(*‘-?-,

13.5

B. Refer to UNIT #13- ACTIVITIES TABLE, Activity 1.

»

SELF EVALUATION:

¥

A. Identify the four elements of the concept of nubproQ

grams in the following analogy.

RS J— . . -- o e
. .

A student is working s problem and comes to' a - Lo
v) step in which he must take the square root of a num-- o
"ber. He refers to a square xoot table in a mathemat-" .. e

~ . -

. X - oo Lt . ' .6_ .,
. ical handbook, writes the syuare root of the numbel o _‘%
‘ : op the paper, dnd proceeds with the problem. .- e T
N . 2 R . .

- ~ w_ B, The Yortrhn compiler has a "built-in" subprogram for BT

ty R T

N) - ", ¢aleulating the square root; the name of the subpro- v
S v ‘ . K ! .
.

gram™J 8 SQRT. Suppose that the statement Y=SQRT(X)

. — ;~ B . - |) ' » . .!. '.l._ g
i > 2 . . T LI R e
' LN : oecurs in\§<f:?b(gn~pgogram. Identify the four ele- ' N

S ”~ > : “ " meats of tﬁeiggifepc of subprograms when that state-
- ' ment 1g &xacutéd; “ . - e
. ~gDBOBJECQTTVE I1: Constrruct aingie statement functions and call- ' ':'.L;,_
- § - . 4 ! ~ . - “a
¥ o _ . 8
. ing statements for them; construct compfgte a
' prograw using-them. ., . , - ‘ B T
' '\ < K ! . .) 3
ACTIVITIES: . - | R
. RN - ¥ . . . R) 3
© C. Refer to UNIT #13 ACTIVITIES TABLE, Activity 2. i AT
N T - ' < . " . - . IR . Y e
o . . _ 4 2
w "Dy The quadratic fefmulq for finding the rootﬁ'of_a” ' R
. A o ,_ . : — BN
: V2 o o ?
. . < ¢ ~ R
. *._,_,gj . . . ‘ ., .]] o) - .
n ' -.2-‘:\. ’ . " -‘ '. ’ l 9‘) .I . ~ . . ! » :.
R . : oy . o .
) ‘ \ : \ ;

Mgy T meealf Sam -t - e e v - - T R e B e R, S e vy L A e oD B o e o, S, e | = SIS gy ¢ R s et = i T E o L o g

13.6 .
.
. 0 . _ w
quadratic equation of the form . A
o ¢ \ I
- ax? +; bx + c w) _ "
is - B) . .
| SN V1Y v .
R S . et - . U L. 2a R . R Tl . . R S
A simple program fof finding the roots of a '
‘ quadratic equatidn\ia shown below{ thé”pnogrém
s, . v
%%%9 asgumes that b> -.4ac 2 0, that is, that ‘the ' T
equatlion has two real rootg. 7 .
! v ' . ' *
v} l N
b‘ * . , EAP(S l)A B (a
11 FORR@T(BFIO 1) P
ROOTIN (~B+SQRT (B¥B-4 A*C))/(Z 0*A)
ROOT2 (B-SQRT(B*B~%,0 A*C))/(Z?O*A) o
- WRITE(»2)A,B,C,RO0TL,RO0T2) o .
2 FORMAT {1 HO, 5%10 2) e -)
CoppsToR g) -
[LND 4 . / “_
. : , . : \-% Y1
.) . '. L4 l . . . ’ '! -
©y . _ Tﬁis program can E&\é:?roinﬁgypwever in the
) b h accuraty of the calculation. In UNIT "#12 (COMSC) yo
- learn ,.'something about the loss of.significant digits
! N N W .) * l. . ~ '
) "In arithmetic operations. An example given in UNIT #11#
» ' R
. , illustrétiug this condition is found in the quadratic
formula. 1f it turns out that the absolute value\\f b
. . and the quantity Vb® -~ 4ac -+ are of nearly equal magni~ g
a R

w

I o i &
Ty

.8

'+ e B, ahreday P L N W, W o Poe kel s et e St ememseabe e
. .

&Q" !

¥ 12

tud@~and the two are subtracted, significant. digits
“ .

may be lost. In order to prevert the occurrance of

this possibility, we can find the roots using a

slightly different approach.

Use
NSV I ST

f; = btV'd Sac when -b>0Q

. 2a o

, \
\and use .
heVHE

r, = -b- b 4ac when ~b<0.

. . 2a

L 4

The second root can be found from
r, = S

2

since it isitrue that

SRR
(Try it, if you don't believe itl)

The program can ke rewritten ag follows:

8 4

13.7

: READ(5,1)A,B,C

1 || FORMAT(3F10.1) _ .

IF(~B)10,11,11 /4

10 || ROOTLw (~B~§ QRT(B*B~ JO%AXC)) /(2. 0%A)
1 GO TO 12

11 ROOTlM(*B+SQRT(B*Bw4 O*A%C))/ (2.0%A)
12 ROOTZmC/(A*?DOTl) 0

{| WRITE(6',2)A,B,C,RO0T1,RO0T2
2 FORMAT(lHO »2F10.2)
CALL EXIT
END
N YA
’ v ' ~

13.8

b AT TR (P o e

e e, TS e Y S S TN |

v R R gt

L d

NO?@%%?In the arithmetic IF statement, transfer can

Y

ba ei;har'zo statement numbeyr 10 or to statement tum-

bar 11 when (~B) 18 zero. The results are the same .
?

either way.

Construct tﬁ:ée single statement functions for
finding the roots of a quadratic equation. {(These
will be for statements 10, 11, and 12 of the pravious'

program.) Co

There are mény ways to construct the functiaqa

1

A\ §
correctly., One set of torrect functions is shown
r

) -

below: . . .ot '

RINEG(A,B C)a(anSQRT(B*B“lf O%AXC))/ (2.0%A) -
- R1POS(A,B,C)= (*B+SQRT(B*B»-I+ O%ARC))/ (2.0%A)
R2(x,z R)*sZ/(X*R) . ;

L
\

(Notice that the names choeen for the\fu nctions.
&

must be real in this &ase, siﬂce‘thé results are -, ’

, /3\0 '1‘*13 T

o . [l

e e o i o iy T

L 4

. .
> . -
P °

returned to the calling statements as the names

of the subprograme. Real names return real results;
AN .

integer names retury integer results.)

Now comstruct three calling statements for tha
functions y%u have written. "'““\\\;)
. ' T

*

\ -

oo

-

q

Again there are many possible correct calling
J

statements. For the statements above, the calling .
3 ‘ »
statements could be ™ S :

ROOT1=RINEG(A,B,C)
. ROOTI4R1POS(A,B,C)

ROOT2=R2(4,C,RO0TL) | SR
L, |
The function'names must match exactly; the arguments
‘ :l \7\ :
_ IR
A

!) .in the correspongding calling and function statements
- ' ’ . -

must match in number (three in thia case), type (feal

to:rmal and integer to integer), and order (first

’ 5 ' /D
,k/ . ' argument in calling statement tg fif@t argument in,
function statement, eeédndlto second, etc.).
T ¢
SELF EVALUATION: R

> . \M)
C. Reconstruct the entire program that f£inds the roots
- 4 of a quadratfc equation, making use of the functions °

that you have constructed.

(" : .

St AT g e

1

TR R T ST AT g e et
~—

=%

. E) 13.11

v
o

There are many ways to construct the, program f///?r/,,

correctly. . One-solution ls shown below.

RlNEG(A)B €)= (~B~SQRT(B*B)~4 . 0*ARC)N / (2. O*A) -
R1POS(A,B C)w(dB+SQRT(B*B)~4 O*A*C)
JR2(X,.2 R)~Z/(K*R) S N

| |.rREAD(5,1)4A,8,C
L 1 | | FORMAT (3F10.1) ;

IF(-B)10,11,11 «
10 | { ROOT1=RINEG{A,B,C)
GO TO 12 ® v
11 || ROOT1=R1POS(A,B,C)]) .

12 || ROOT2=R2 (A, ¢, RODTL)

WRITE(6,2)A,B,C,RO0T1,RO0T2

2 FORMAT(IHO 5F10. 2) :

CALL EXIT oo "

END R e -/

Notice that the arguments in thé function ataéemen;s
. * - .
are dummy arguments ‘and need not befqgi:d the same
Bx'?alid

names- of the *propéar types may be.used as arguments

as they are in the calling statement.

i

in the. function statement —- provided that the same

names. axe used on the right side of the =, of courae,

¢ ‘-/ f i .) .
D. Xdentify the four elementg.of the concept of subpro-

: ..'.ﬁ
grams for the program you have written.

SUBOBJECTIVE XII: Construet a FUNCTIOﬁ subprogram qnﬁ'calling

statementa, conatruct a mai\Z program that calls £

¢ the subprogram.

TR AN A G S Ta e SRRSO Tt NSt IS e e S

~ACTIVITIES: . . . :) .

F. Refer to UNIT #13 ACTIVITIES éABLE,'Activity 3.

'G. Below is a simple program fbr findiné<the maximum

element in an array of real nquérs.

*

_ DIMENSION T(31)

« "I READ(5,1)N, (T{J),J=1,N)

1} | FORMAT (13/(10F8.1)) '

HIGH=T (

PO 10 J=1,N

IF (HXIGH-T(J))11,10,10 -

11| | HIGH=T (J) - ' >
10{ | CONTINUE B ’ -
‘ WRITE(6,2)HIGH —

2| | FORMAT(1HO;F5.2)

STOP

END

~

Take the algorithm for finding the maximum and
construct a FUNCTION subprogram that will find -°

. .
the maximum.

A3

")]
. T 13.13
- - - e
g Cthe
_° One correct.way to construct the subprogram is
shown below. .
4 N » < & . M A
I’ o - - . - o
FUNCTION HIGH(T,N) -
DIMENSION T(31) - .
HIGH=T (1) . oL
1| DO 10 J=1,N .
IF(HIGHnT(J))ll 10,10
11| | HIGH=T(J) . ot A
10 | | CONTINUE CN
RETURN ‘)
ENDP
R A | . , '

o

A | —

Notice that the namesof the subprogram 1s real,

- : K} M -
since we have an array of real numbers and will

4

want a real number returned to the main program.

Notice also that the name of the spbprog%am

1. .

£
.appears (and musg\appear) at least once to the

left of =; thia 1s done so that»tﬁe result obtain-

- ed by the subprogram (the¢ maximum element in this

case) can be transferred back to thé maln program
. i))

as the name of the subprogram in the calliné state-
. ' . . *
“\entb .

It is also correct « and actuaily preferable e
to write the DIMENSlON statement DIMhNSION T(N) ’

(except on the IBM 1130). More will be sald of this

~

\ L]
Clater. , t . ,
! N ———

H, Now construct a calling statement that could be used,

‘<, . Y

<
Ao
)
:':J

Bl Rt b I T TR 3 N EE BN TN § = B b AT S RIS E S P L LI A J . - S Ereu e e S

oy

SRR ———

13. 14 :
e | /

. - ; ¢
* . for calling the subprogram. Any correct calling

_statement will do. |

AY

Several examples of corxrect calling statements

%. ‘are shown below.
w) i ,
X=HIGH(X,J) '
BIG=HIGH(T,N)
- BIG=ABS (HIGH(T,N))+5.0
. Y=HIGH(T,10)
. ‘ B=HIGH(T,J-1)

I. Now conatcht a main program from the simple program

B

given earlier that will call the subprogram that you

Wrota L]) - .:
. \ : , .
i H
. . 2 &
® \ \
. - e
¥ L2
V
‘
P4 .
. :
N
-~
- .
b Y
_ ! 3 3
. e ’ .
(oo \ A
%
- . ’ b

_ 'Onéggorract waj.to goﬁatrugt the main program is éhown-'
S -0/} IR

u o

T RS R R ST E TIETESORL SRR - R e s cas e ...m—'\—-’.u"‘s_a’iﬁvr-,m:r_4_(ﬂ-i.ﬂ-qml,—ﬂ.,_%.\x- R T B e MR e P L B L o ST St ATy ot g g e e e SR e 18 e ke R A e B S e S g s men s

a . . e
‘ e -
- - o o 13.15
PROGRAM -
DIMENSION A{31)
EAD(5,1)N; (A(J),J=1,N)
FORMAT(IB/(].OFB 1)) N - -
e = IG=HIGH{A,N) — S .
ITE(6,2)BIC ~

FORMAT (1HO,¥5.2)

1 STOP :

| [END
A% ’
SELF EVALUATIQN! !
o} e \ .
. E. Refer to UNI® #13 ACTIVITIES TABLE, Activity 4.
bUﬂbBJ CTIVE IV: Construct a SUBROUTINE gsubprogram and CALL
- statements; construct .p maln program that
~calls ithe subprogram.
. J. \ Refer t§ UNIT #13 ACTIVITIES TABLE, Activity 5. A
K. nstrugc a SUBROUTINE subprogram that will find
- _ th maximum,elimen; of an array‘ (You may use
the amé algo 1thm used in the previou& section.)
f "
, ' <
] \
i \\- . . ’ I) @
. * ' 2\.,1::?

e e skt B e LRI S N T s | KOS IO Y Sy

13.16

Y |
.

e X s Sl R AT T | Eamame e 1 i con

y ’

A

One correct way to construct & SUBROUTINE

subprogram to find the maximum element of an

array is shown below.

&

SUBROUTINE HIGH(T,N,BIG)

' DIMENSION T(31)

BIG=T(1)

DO 1 Js=1,N '
IF(BIG-T(J))11,10,10

11} | BIG=T(J) ‘
10| | CONTINUE '

RETURN
END

s o

Ly Construct a CALL statement that may be used to call the

SUBROUTINE subprbgram. . . ' 5

A

?:

Some examples of correct CALL-statements are given

below. ' v

CALL HIGH(T,N,BIG) . ; ‘
CALL HIGH(A,M,X) L
CALL HIGH(A,15,X) «

\M. Write a main program that will read an array of N elements

«from data cards: will call a SUBROUTINE subprogram to find

L4
1]

TN AT B e R e B R e R - B s R sl At RIS
S
: N L3 ﬁ? ,
. & - » »
v L .
. s
Le
-

L

the largest element in the array, and will write the

largest element.

| o RN -:.-'5}:3?" p
- i T
S
One solution to thé& problem foliovs:
14 . s. R
1
DIMENSION A(31))
1 T READ(S,1)N, (A(J),J=1,N) . ; -
1| | FORMAT (13/ (1078.1)) _ . P
| |CALL HIGH(A,N,BIG) '
JWRITE(6,2)BIG
2| | FORMAT(1H0,F10,2)
| sTop ' .
END - T
'_7/ :
. . . |
3 29'1

B s IV ST SO

T T e e e R AP YoM oA S2E, (o At Lot e o i menene B e Aty e . - Ly e
LY 7 °
.

a

’ - LEY ¢ ‘ 1
. . .

. e . ‘ ‘ . \.! & - \ -
o . 13,18 - ’ .o - . | g! . \\' ’
) L . 7{ L ' 3 ’ .

e e T . NOTE: Thé-DIMENSION atatament in the subprogram could

-

-) : .. bew«« in general should bg =~ writ;en DiMENSION T(N),

i .
S . . - N

N .; el . @xcepc bn the IBM 1&30. You will learn more about
] B . '\ [
- T . ‘ . . .yf ' - : ‘ .
- s - Lhis 1n the next activity. - .
. ~ P . . : s, e T .
S - e) ' : SR
' N. Refer to UNIT #13 ACTIVITIES"J,‘ABLE, Activity 6.
: . - - - - - w

~

%

*
» : - 3

F. Refer Lo UNIT #13 ACTIVITIES TABLE, Activity 7. : Lo K
. ; . . r '
v ' ASSFSSMENT TASK Please seﬁ your i;structo:.\ You will be given a | '
. ﬁroblam for whtch you are to comstruct a prqgram |

\ N o

gnd run it on_a computer. Then you will be Te-"

- . K :
! " quired to gdﬁstruct some short programs or pro-
(| , | ~ R
gram segments that make use of the various kinds
i) N of subprograms. . ot o

»
e,

WHAT NEXT? If you haven't completed UNIT #11, you shéuld do so.»

v

You éhould'start UNIT #14 as soon as &ou feel;that'yqu

have' a goo&:grasp of‘ﬁNITSL#ll and #13 YoQ‘may\wanF_f
to rxy UNIT #12 or #16 concurrently with UNIT #14 . J'
When ygu have completed UNITS #ll and #13, you.
N | méy elect_¢§ s&ap, in whithagase you are not eligible
| éor é grade highér than "3.“ Ik jbu wish to try fér
 "an "A " than yoll must complete the remaining units, - -

: Discuss this with youx instructor if you wish,

T i . Sy

.. UNIT #14 (COMSC)
. ’ ' s /\
TITLE: DEBUGGLNG _

RATIONALE: " 1f ydh haven't discovered by now that it is

ra????_9?§X_¥9_mﬁk9majgrugpgmmiggﬁgrrgg,.thn“ .

either ;ou'afe an exceptional programmer or
you hanAit been doing the programs. (Which
do you think is the mbre‘likely?). People
involved in:gigprating computer programs
\qually admit to making programming errors.
They also have developad debugging techniquas
which help.tﬂgm to keep the errors to@g mind-
mum, In this unit you will ba expoaed to
methods that othery hava found ugeful., You
will alse have an opportunity to help those
bahind you -in the Fortran programming hierw
N ‘ archy with. their programmlng and debugging
problems. You should strive to prevent pro4
gramuing eg%ors:.bﬁt_yéd also. should be able

. to correct errors once they occur.

-«

OBJECTIVES: To"p pravant programming and logical errors.*

To diagnosa and cofrect errors, if’ they do

3 i

? ;14°¥3£)(;.

occur/\ . v "

. . 0‘\ . ') .
PREREQUISITES: UNITS #11 and 13 (COMSC). . :)
' _ N, 7 Lo ./

At this point you should carry out the activﬁtieg iﬁ‘the .

UNIT #14 (COMSC) ACTIVITIES TABLE.
Now fou ara on your way to becomin§:3ﬁ~MBE oY
\ N o " N _//

MASTER BUG ERADICATOR /o
- o ' /

Several levels of debugging exist. Some a e,eaa:?% to
- -

use than others; some are used under one syste , but dot

&

another; and so on. Whac{one';ooka for is an [effective method
. for the particular system that is to be used:

Here are*aome'general suggestions that you should use for

debugging will be simplified: .
¢ . _ ' '
- 1. Plan your program carefully. . Is the loglic correct?

Draw a flowchart

o~

Does it handle all possible cases?
"~ P '

in anouéh datail to handle the stirky parts of the

program-before yau actpally start Lo write the pro- .

.1 » | _ --gram. %f neéaasary,'break up'ihé rogram into Qf-.

- . routines, Includ% check painP'and diagncstic'printﬂ '
outs in the planning stages, rat;hm% than after the

.v*) ‘-) - .) 1)
_) . 0 . . . ‘
: | &7 ' :

W

1

errors occur. Check your loglc one more time.

— "
: S
You ghould bé in the habit of writing ag initial comments

.

section at the beginning of the program. This comments

section should include your name, ddte, problem name or , .

title, a brief description of the problem, a 1lidt of
2

variables, defipitiona and formats of both 1h§u§_gnd;_

output variables, thelr function in the program and fheir
¢

dimensions, a descriptionr of apecial or exceptional ¢on-

ditions, and possible error conditions.

’

Place all of the type declaration statements at the

beginning of the program immediately after.the initial

-

comments section. These daclarations*inclu@é;COMM@N,

DIMENSION, INTEGER, -REAL, DATA, etc. R .

Resq?ve a block of statement numbers gdr'FORMAT statement
numbers - for example, 200~299, Place all FORMAT state~
ments immediately after the type dec%gratioﬁ statements,
In this way it-is posg%ble to check eaéily the exidting
FORMAT statements to determine whether it is nécesaary‘

to add another FORMAT statement or whether a current one
oLhex .

will do. As a rule you will be adding and deletsing write

statements during the debugging phase. A block of reserved

&

FORMAT statement numbexs will slmplify the process. #

Resgrve another block of statement-numbers as FORMAT
statement numbers for temporary diaghostic type printouts.

Place the FORMAT statément right next to the WRITE state- -

208

9.

-~ N
!

PR R = s

ment. If both ar@\punéhed on oppoaite cut cards from tle

‘

rest_of the program (on the back side of a FORTRAN card,

for example), 4t i8 easy to remove both when you are

finished with them.

-~

Keep your READ, WRITE, and FORMAT statements as simple

ments, the more 'likely you are to. have trouble.

~
®

Use}a CONTINUE statement as the lagt statement in the -

range of a DO. Use geparate CONTINUE stateménts for the

ranges of nested DO's.

reference point for GO TO statements.

Use a CONTINUE statement as a

Then it is easy

to insert.or delete other statemants without having

tq repunch the st tement number and shuffkg the cards.

Parenthesize your program by indenting parts of the pro-

gram that are in the same logical block.

7

parentheslze the statements that are in the range of a

DO statement,

Example

3 DO 37 T = 1,N
T = BRE4, O%AXC
DO 35 J = 1,M

S(I,J) = T*X(L)
R(I,J) = T*FLOAT(J)*Y(X,J)

35 CONTINUE

37 CONTINUE

chance of having to make.a'chan337in the value of the con-

-,

209

-

Use variables rather than constants 1f there is a remote

In particular

as possible. The more you try to include in these state-

c&':'.v

e Saamun S

Y

1

At

Lt ¢

‘ stant. .For examplae, 'if ‘you have several statements of

the form

- -

-
- L3

: S T L .
it {8 easler to make a single change of thy form

’
< -’

. 1

1UP = 15

provided all the DO's originally were punchéd as

DO —~ I = 1,IUP

I3

than to chapge each DO “individually.
After you have tried &he program on the computer and

found thqt‘it cbntéih@ eérrors, ther you should begin by

correcting complle errors, that is, errors which prevent-

ed thé'cqmpfler from making sense out of what you wrote.

& . - ®

Generaliy the bémpilgr will list suziaﬁrore. Soue com;

pilers (WATFIy;'for example) list mdet of the error diag-

@

nostic messages immediétel*_following the statements con-

[y

taining the e;rqrs; some.(liBO, for example) list all of

the diagnostic-ﬁessagés at the end .of the program listing.

&

Often one error may produce several‘ﬁiagnostic messages ,

some of which may not appear to be related to the error.
i - e .

@
-

Usually, in such cases, howeyer, at least one of the

¢
.

messages will -be meaningful.

When there are no compile errors, the program may

still contaln executioh errors, errors which make it

impossible for the computer to perform the fnstructions
| e | | X
. 210

14,6 . .

= yaes s i 3 E 3 ool

&

LY

glven to it, @ome compllers (WATFIV, for aexample) give

N
|| _ : diagnostic messaﬁes for exacution errors; some (1130,

BENAW » for example) give no erroy diagno@t{cs.

T

12,

. :\\ - Here are some general suggestions for removing

<

.)
compile and execution errors:

Y

“

. 10. Check the punched deck for mispﬁnchad tharacters,

words gpelled'incorrebtly, interchanged letters,
atc, Also check to see that the corract columns

are used -- statement” number ip 1 to 5, continua-

~

tion in 6, Fortran statement:in 7 to 72. Make

wure that all comment cards have a "C" punched

-
-

in column 1. s

Check control cards to see that they are in the

proper order and are corrgftly punched.

Use the error messages to see which lines cause '*%\

&ompiie errors. Remember that the error megsages
may not alw§¥§ diagnosé the errér clearly, but
fhey d; idéérm you which line is. in error., Check
éﬁe correct form of the statement with the text-.
book for commaa,-pareptﬂesee, ﬁandatOryluse of ’%Q
integer .nuibers, etc. ° |
Use the WATFLV diagnostic-ﬁessages,to find exe~

«

cution errors. The messagea'tell in which lines

the errors are. Again be avare that the error

N -

ﬁaeéage ma%,nbt always diagnose the fault exactly.

Cheék the form of the statement; check to be sure.

Rl

- §

£)

" ‘ ! . . ’ -'-r-

b b e Stbietd

)

/- . "that the t§pe of the variables 15 conaistent»-
s . i real numbers read with F-type formats, charac-
' .
. ters compared with characters in ah IF statement, , " '
RO . ? eté. (Check.fof keypunch errors involving mis-)
B ' _ spelling in variable.names. Also check for

. A}
reversal of row and column subscripts.
\x 14, 1f therv are no error messages, but the answers
are wrong, three main methods are used:
. - :

a) Intermediate results should be printed out

if any lorg calculations Bre performed;

write statements may be inserted to check ‘ <

s “ -

- on the order of execution of the statements.
(Unformgted 1/0 in WATFIV is useful here.
See "Format-free 1/0" under "Language EXCen;
aions," page VIIL.7 of Appendix VIII.) -
b) Go thru the program statgmegf by statement,
performiﬁg all operations bf hand and keeping
! ‘ _ | " track of the current value of the_gffiables.
é)r Break uptthe"program intonegﬁegtéhor sub-
pfogrgmé, running, each individually to pin-
point where the error occurs.
" There is additional.informacion in Aﬁpendix VIII for

debugging using the WATFIV compiler. See partiewlarly.pages

VIII.17 % VIII.19.

+ SELF EVALUATION:’ You have already been dabugging programs now for

. some time. - You probably havé'é?me notion of
: - }

.i“l‘l'.h

ASSESSMENT TASK:

’

form on the next page. You will be supervised by

N 1
& .
success or lack of it in debugging yoursown programs.

What's it like to debug sonieone elsé's program--
one you didn't write? Your guccess at this task is
a real maasufé_bf your debugging aﬁﬁl}ty. Report,
to your instructor; he will give you a program list:

iné that" contains errors for you to debug.

ta

Now that you are satdsbted with "bug killer'. techniques,;

you are'readyifor the acid test. It is now your tuxn
to climb ovethQ the other side and help those %nrther'
down the ladder with their aebUBginé problems.‘ Beé
gentle, be tactful, ask penetratrng questions, try to

A

help/the neophy;es learn how tq debug. If allﬁklse '

o’

fails and you are in dire need to convince.the neophyté

that he can.improve his technique, .you may ask in a

controlled manner, "Why in thunderation did you do that,

- -

gtupid?"

*When you are ready, report to your instructor and

he will set up a schedule ior you to be*in diagnostic

»

lab for sevegal hours in the next 2-3 weeks. Keep aghw.

-

detailed log of your'activities by £i1lling out the

9

T .

the diagposticidéﬂregularlg,ﬁssigned to the diagnostic
lab. Be éufe to get his signé;uré and his evéluatidn_ ;
wher” either you or ﬁe wmust leave the lab. When you
ha&e “served your time," then take your log sheet to

youy instructor for his. approval.

.

213 L

A e g k. e ermns = + — - e e
‘ . . o= 7 g vy -

.

‘ * \ . ; i o .

- _ . . Log for Diagyostig Lapﬁ “ ' J} . ‘ﬁl‘

i . |) ‘ ' . ’ e)

*

:* Your name i !) _
v) . Ry,
Time Time Time Supervisor's Total
- in - out _spent [Name Evaluation¥® helped Tally of vigitoxs help?d'
- . st N . - k . | . s \ ,
0 i) | v
r ‘ .
‘ }
. ~ i)
—s & \ - R
7 - _ v N .
) - , I E
. . i) T e
v z i
(LY ‘ :) (
J T
. . | ’
T i
* "S" for satisfactory; "U" for unsatisfactory. Place rewarks below or on back. .
. ¢ '
‘ fan - ’ . i
’ hd . »
2 A 4 . bl . 2 1- 5
¥ ‘“‘#« .. . T . *;.-‘_‘.‘. : . o

B
;8

6°%1

&
. ' 14.10
v)) Fi L [y :
WHAYT NEXT? At this poiq&Etha rem?;ning units probahly are 12 and
¢ B " 16. You may elect either one of these. TIf you have -

completed them, then you are ready to do UNIT 17, which -

*
is the last one.’
)
—_ (— - R L.
.)
. L]
'/' \] &
L
A
NS
.. -
g ’ [
A <
i]
216
H
\ .
; LR

"
i

h

UNIT #15 (CoMSC) . . °
/ T

'
‘.
. - v

This unit has been o fied from this manual.

7/
¥
'
Y 4 '
7 o
rd
. .
’ 7
1
*
'
.
.
o 1501 2“- { :
N PR
.

te

[
.
t
*
)
.
~

£

A%

/ ' -

UNIT #16 (CoMSC). ;

-
. TITLE: COMPUTER CONGEPTS

Ay

RATIONALE: After proceeding this~farwiq§£he.COMSC Bequance you

‘should -be wondering what ‘15 Yeally golag on {n Ehat

.comﬁu'ef.» How’ddes it put programs, subprogrémﬁ,
instructions!‘and data together in a.way that mean-
ingful results occur? This unit should give ﬁdu'~
& éoma insight into basic_hérdware.elemantg éf a
compﬁtar an& a feeling for the relationsﬁipg that
exisé béhweé; hardware~an& prbg}ams. |
OBJECTIVES: Describe hardware features of two different |
machinas.; Describe the 1n€arrelation;ﬁipa
baetween hardware features and various feétures

' used in setting up a‘Fortranzprogfam.

N PREREQUiSITEs; UNITS #11, 13 (COMSC)

ACTIVITIES: We shall take some time out heravto describe’
hardware aspects of several different comp&ters. -
A spectrum of references exists on different ma-

chinés. The most comprehens%yefto date is the

book by Bell and Newell which discusses in detail

161

. 16.2

many exisgingfcompuﬁers. The prk by qurga
discusges briefly the organization of several °
different computé}a; ;hilé the ;book by Iveéaon

. ‘introdhcgs an- elegant language that can be used?
to describe computer ilnstruction gets conciaefﬁi ' '
The book.by Struﬁle refers specifically tQ\EQ;
IBM/36O series and the book by Louden refers to

/) | the IBM 1800 and 1130 machines. Both of these

books deag;yith assembly language programming

. : for the respective machines.

G. G, 'Bell and A. Newell, Computer Structures:; Readings
and Exawmples, McGraw—Hill 1971. :

. I. Flores, Cowputer Organization, Prentice Hall 1969.

K. Iverson, 'é Progr&mming thguage, Wiley, 1963, 4

R. K. Louden, Programming the IBM 1130 and 1800, Prentice
Hall 1967,

- G. Struble, Assambler Languagp Programming the IBM System/
360, Addison Wesley, 1969. , ’

N
¢ \'1:‘;

S
v

Experience with gssembier'language programming -

18 necessary to get a real feeling for computer hard— .

ware and its relationship to higher level programming. 7

Lor

If you find ghe concepta describad here and in the

o “'U-

»

-

"éﬁpériénéé"&ﬁ“a“Sﬁiii“¢6h§ﬁEéi’éﬁéﬁwéﬁman IBM

§ R ‘ »
readings of 1hterest, you might want to get some
experience with assembler language programming
followed by additional experlence with compiler

writing and studies in computer organization.

Qﬁe of the best ways to get an understanding of

-~

computer hardware concepts is to get hands on

. 1130, a Digital Equipment Corporation PDP-8 or

PDP-11, a Hewlett Packard hp.2100, or some

-
.

similar machine. -
()
Computers can be described in terms of

& . ¢

processors (Pj, memoxy (M)} switcheé'(s),.control
lines (K), and input/output devices. Bell and
Newell refer to puch a description as a PMS descrip-

-

tion and have creatsd a.special language to facil-

. o ;
. itate the discussion of a PMS description. Com~

~~tion sets, data representations and registers.

. scription of imstruction setg. Bell and’ Newell

puters can be described also in terms of instruc~

-

Iverson created an elegant 1anguagé for the de-~

- .

¥

-

created a different langﬁage for the ﬁéscripcibn

of 1ﬁstrpctiop sets. Although these languages

are well designed to describe machine <characdteris-

16.4 . ‘)
AN
. ' - T : -
§ [

tics, we shall not use them in this - unit since

. ' it takes soﬁa'study to bacome proficient with .

theilr use. '

\ ~.

Thé memory of a computer stores data and 4
inatructions. Just_as.Fprtrdn atataméﬁ;a are
T T T e am"-anged--in -eards-in "5aquence;“‘mch1ne ""j;ng'trucfa"""'— T e
tions are arxangad‘in memory in'aeqﬁénce. Data
aiao are arranged -in memory in sequence., The

¢ - Y3 .
only distinction between data and instructions

i

<. is that instructions are interpreted and.exegth 3
ed by tH; qpéputer whareas daté‘ara not. At

. 'timas, lostructions may be opératad on as data.
Present day czgggter memories are made of magnet-
ic cores. New technologies are under investiga~ . ~
tion fog faster cheaper memories. Most of the
memories operate in a two state or binary mode,
that is ‘in an "on-off" or "0 - 1" mode, Two

- state devices aré fast, reliable, stable and-

T ow

?

. &

' . reasonably cheap. Devices with more states
.) - ¥y
s . currently lack one or more of these required ~

- ‘ characteristics. _ .
" o Because of the use of two state technology,

computers normally operate in'a binary arith-

ar

’

o b

o) _
ters and groups of anBers. Some computers use
* /

16.5

métic mode. We shall discuss biﬁary, octél, and

hexadecimal arithmetic later. Memory is organized

in a hierarchy of bit patterns. Two of the funda-

mental bit patterns are used to represent charac-
N i .

1)

. ! .) ~
6 bits to represent & character resulting in 2°

~-0r- 64 different-unique-characters: —Recent computers —— -4

L ad

use 8 bits to represent a character. How many

unique chargcters are possibie with an 8 bit repren'

sentation?) ‘) o

Sample character codes are shown in Table 16.1.

N -) v .

16.6

o # (
ASCII / IBM
chéracter 8-bit 6-bit (TTY) 8-bit 6-bit

‘blank 1000 0000 10 0000 0100 0000 .110009

A 1010 0001 00 0001 1100 0001 01 0001

B 1010 0010 00 0010 1100 0010 01 0010
Sy 1771010 1001~ 7 - 0010017 {11007 1001 0L 1001

J " 1010 1010 00 1010 1101 0001 10 0001

g K 1010 1011 00 1017 1101 0010 10 0010
R © 1011 0010 01 0010 1101 1001 10 1001

s 1011 0011 01 0011 1110 0010 11 0010

T 1011 0100 01 0100 1110 0011 11 0011

2 1011 1010 011010 1110 1001 11 1001

0 0101 0000 11 0000 - 1111 0000 00 0000

1- 0101 0001 1110001 1111 0001 00 0001

9 0101 1001 11 1001 311 1001 00 1001

(Q»/oioo 1000 10 1000 0100 1101 11 1100

) 0100 1001 10 10Q1 0101 1101, “01 1100

+ 0100 1011 10 1011 0100 1110 01 0000

- 0100 1101 10 1101 1 0110 0000 10 0000

. 0100 1110 10 1110 0100 1011, | 01 1011
.= 0101 1101 11 1101 0111 1120 ' 00 1011

TABLE 16.1 -

H

223

- SEVERAL DIFFERENT CHARACTER CODES.

2 4

‘

“eérably from the codes used by the common carriers

16.7

<

These character codes are recognized by
different organizétionsiand dfff;rm;t cémputﬁrs.
The ASéII code (American §ﬁandar& Coda feri;pfor-
mation gpterchangé) is the résult of an attempt
to standardise character codes. The codes imple-
mented by‘éomputer manufacturers differed consid-
(telephone, télegraph). _Pﬁﬂﬁﬁems arose when com-
puters were attacﬁed to common carriér lines. The
ASCI} code helps éo pgovide standards for two pre-
viously independent iﬂéustrias. ‘

The gxtendéd Q}ﬂgry coded égc%mal interchange
code (EBCﬁIC) 1s used by IBMf36q‘and 370 computers.
By raplééing a .8ingle éit under program control <in .
a 360 or 370, that machine will recognize ASCII
code. Howewér, IBM, at present, dogs not* support

software to use the ASCII code. '

There are two places where the character
codes play iﬂféttanﬁ functions._ One-of’these
has been discussed earlier, namely the number
of bits used to represent charactérs. The more
bits per cﬁaracter, the greater the number of
uniqua_charaiyers.that caﬁ be rapy@éented~by

the code. The choice of the bit codes to repre-

e e e o

-3
.
L
£
4

16.8

IBM code:

ASCII code:

. . .

Lo G - -]

Hon

w4

sent characters is of 1ast1ng importance to the
programpers. Since & character 'is represented

by a string of bits, that chara:ter code also

" can be thought of as a number. When all the

nuneric -codes’ the resulting sequence is called
the collating bequence. Arrange the characters
presentad in the previous table in increasing

sequence according to their 8 bit codes:

. »
-

ol

blank, .,

o

Are these seqqgnces the same? %)

1t a list of paoples names were placed in lncreasingi

alphabetic sequ@nca according to the ASCII 8 bit code,
would that list also be in increasing alphabetic se-

quence according to the IBM 8 bit code?

4

What do you think the 8 bit- LBM code and 8 bit ASCII

-

for C, K, L, @ and V should be? SR

8 bit IBM - © 8 bit ASCIY

N)

AN

--characters -are -arranged-in-sequence by -thatir --——— — - -

.-increasing sequence. . The IBM character code has - ——

16.9

8 bit' IBM 8 bit ASCII

‘Both character codes arrange the alphabet in

'héles' in it baéwéan I and ,J and between R and §
whereas thé ASCII code assigns 26 consecutive
nu&bers to the 26 characters of the aipﬁabat. if

a file_ié placed in agcanding sequence according

to the ASCII code and then printed, would the list-

ing be the same as if the file were placed in

agcending sequence according to IBM code and then

listed? The answer depends on what was in the

file as follows:

¢

characters in file

" alphabetic only ,

~ -

numeric only

alphabetic and

nuneric

pqinCed kistings the same
yes

yes
\ -

; ' no .Wﬁy?

alphabetic and

special fyaran€§ra ? | !

numeric and . :
special characters ?

L X

Why?

S

s

Why? —
The fact that differené character codes éxiat can
ba of concern to you in applications where the inter-

226

‘ N . .
,‘ €
. . . .
“- ! .) - FN ’ ae e o e e s

B e LI R

Laae S G = =~ = - S P A TP TR PR UUE SPES e —.

16' 10

pretation of the code iai;ggbndent on the specific
\ .

<

code used.

Since any group of bits could be called a

' e

. oy
character, if one is interested in processing char-

"

acters, the computer should have an easy way to

manipulata characters. Such machines are referred

g e e DU - - .1 T L% e e e e e e e e e e e e e e e e e e — e — . = .______._.___ ,.___...___.Q_._________. T
* to as data processing machines. Other applications .

require the computer to perform/a large number of

cogputations quickly. rachines are called

sclentific computers oy \aymber cSrynchers." Sev@ﬁgl

- computers bridge the gap-and pfo ide both character
(
manipulation and sclentific computing capability so
pitt ¥ L ,
’ that the dichotomy no lowger exists for those com- '

.

putera.

fv# - . .
— The arlthmetlc data representations also are

@a

imﬁortant“in describing a computer. Binary'is
\usdally.thg base. Intag@rs,aée repfesented“in .
‘terms o£\54nary integers. Reai,numbers aré reprewﬁp

sented in tefms of "floating point" numbers. A

lfloating point number consists of three parts: a

sign, an exponent and a-mancisaé. The exponent
. -may be in terms of base 2 or base 16 on a binary

machine. In order to represent boﬁh positive and
. 4 négativg axponents and.positive and negatiﬁe valuesf Mu,gfx
. ,V' with a aingle,sigﬁ poaitioﬁ, the aign of the éxpaa -)

.

.- o . nent part is determined by its magnitude compared

‘ ’ ')"“f . .) a.
Yo ’ R » V“ﬁ'(. *

with the largést magnifudé allowed for an expohant.
For example on the 360, 7 bits represéﬁt the expo-~
. nent (a total of 128 different exponent values).
Those exponent values that are éreater-chan 64 are
’ ’ consideggd as positiQe‘exponent values, whereés
those exponent values that are less than 64 are

considered as negative exponent values. Such

h notatipn is given the name "excess. 64" rvepresen—
’ tation. On thé 360 the bagé for the exponent is
lﬁ;rather than 2, while the base for ihe value ié
¢ 2, Giveﬁ the numbers ’
O .
exponent . value
.- : | 65 KXXKXKX
¢ 7 - . 68 , . » XKAXAXX
whare Xxxxxxx staﬁds for the same mantigsa in
both cases, the sécond number is N
16% = (2)% = 212
7 .
' larger in magnitudg than the first number.
Numeric data are said to oc;upy a "word" or -
group of words on a computer. Exémplesﬁof word
sizgg are ' | .
& ~
. . @’\])
228

16.12

[™

i

B N EREENNO e - o

computer - word size T>
PDP-8 | 12 bits
o Eea11s 16bits
IBM-1130 | 16 bits)
M 360 32 bits ,
“ CIEM 7090 - 36 bits .
| CDC 3600 . 48 bits
" ¢DC 6600 60 bits

- -
Y

rd

Other numeric representations are possible, “Half

word or double word representations provide for

more economlc use of storage space in the first
. L €

instance and for more accuracy in the second.

+*

What other features should a computer have?

{(Your éxp%rience with Fortran should help you with

a

thi? one.,)
v .
- _A“computer should be able to perform calculations

and tests., It should be able to initiate an inpué

énd an output. Turthermore, it must be able to. exert

control over all of these functions.
Calculations are performed in registers oa most
of the scilentific machines. A register contains the

same number of Bita ag a word. Registers in which

~computations are perforﬁed usually are called the

P

209

ke et

t

accumulator and the agcumulator extension.

extenalon 1s the léast

1 word l ' 1 word

acc . - ace extenslon

The

T . ~
extenslon pair. Addition and subtraction take

" place in the acéumulatﬁﬁ, dﬂ?reas multiplication

‘ﬁ and division take place in the pair of registera.

Tests can be performed to determind whether the

%

t Fortran statement performs this test?

‘previous result were zero, negative or positive.

“ Suppose the Fortran ptatement

<

IF (A ~ 7.2) 12,6,29 “

£

be the next statement to be executed?

16.13

v

were executed and A had the value 7.19. What would

The computer might translate this Fortran statement

’ to a serles of machine instructions similar togthe
- o following: ,
. . loa& the accumulator with A

~ subtract 7.2 - . :
' branch 1if acc < 0 to statement 12
. . o branch 4f acc = 0 to statement 6
branch 1f acc > 0 to statement 29

e

. .aignificant_part of the accumulator-accumulator_._..

a

“r

S~

The IBM/360 has 16 general purpose registers for

y ” performing integer arithmetic instead of a single

accumulator and a single ‘extension. It also has

4 floating point registars for perforuing float-

ing point arithmetic. The IBM 1130 has anlaccumu~

“iéé&i"éﬁ&"éi?éﬁéiéﬁmfar integer arithmetic., Float-

N ing point arithmetic is simulated by software rather

“than hardware.

The machine instructions aranexecuted.sequenm

tially similar to Fortran statements, The sequence

is alteréd if ﬁ brénch'coudition occurs,

Input/output occurs between memory and some

external device. The list éf different external

N - - - LY
devices that can be attached to a computer is an

: ' nmagnetic disk
| magnetic drum
magnetic. tape
magnetic strip
punched card teader
. : magnetic card reader
éptical card reader

¢ _ punched paper tape
KT - vreadey

* card punch

oo 23l

ever expanding one. Examples of such devices are Y

- teletype keyboard

typewriter keyboard

character display

- vector display

1néremgntal plotter

liné printer

character printer_

analcg“ihterface _

o

communications inter- .

faca

1615
paper tapé ﬁunch .f .aﬁéther comﬁutar -

Frequently a small céﬁputer.ie used to control |

the input/output. Such 8 devica.is called an 1/0

Qrcéesaor. Jhe CDC 6600 has 10 peripheral proceaso;s

attached to the mainvprocessor;-.Each of these befiph“

eral processors is given a.specific type of task to

2 — RS - —

' pérféfﬁ{ ;Oéﬁéf>65ﬁbﬁégfé ﬁé#g!ébecial purpose co L

puters which control input/oufput §berations for the
faster davf%ég. Such speclal purpose computers, or

control units, have a limited instruction set which

B

specifically relates to input/outpué.
' a
A simplified diagram of a computer appears in

FIGURE 16.1.

[

-

~

¥

input/output [T 7 “'"]
- . : <o

L

. . .

memory & =m0 control

_ - N
Mo ‘ I
' O

, 1T
» [arithmetic l—--~; - “J ' ‘

“unit -

]

_ . FIGURE 16.1 : '\
THE MAIN COMPUTER COMPONENTS.
ntiol

In this exampie data paths are solid lines, co

paths are broken lines.

A .

4

\

.,‘.;Wi-@wfvﬁ-nﬁ*x—-?“;*-ﬁv—n.ww.ww_..‘-s=_,-,—, ST e e T T T A R Ty s e 1 5 e S EETITS L P « e A e
- N e . . .

v N r * - 4 !
- , 16.16 ~ : . " -
-, _ \ Draw a simplified diagram of a computer

which, includes a|secondary memory such as disk

_ _ : which has a ddta patb to memory and a~control

path to the cvntrol unit.
' |

¢

\
- s 1 4
L) '.ﬁ
y)
i
. | Cousider the Fortfan axpregsion
f”“\ Lo o R=A+B¥C |
t . o.- . ‘%a |
. . What componen'_.? of the computer c_leséﬁbed in the .
. : | previous diagraﬁ.are activated at each stage of
this computation?
1. load’B control, memory: arithmetic'uﬁit .
_ 2., multiply control, mamory?,arithmetic unit
.. by C S R ' R
. -) X '~ . . . £ -
) 3, add A control, memory, arithmetic unit
T store . control, arithmetic unit, memory
s " result i . o '

gl

g Uy U S N

TR YT

- T e WA AR
o .
16.17
Y
What components ¥f the computer described .in the
- diagram are activated by the instruction - .
READ(5,111) A,B ?. |
) b
.) 1
1. format 111
gy _A_,_-T._ o e e \ S
R 3. format 111°
4. rvead B §
5. format 111 .
What components ére activated by the instruction -
| WRITE(6,113) C,0 ?
1. \
20 -
3. " i .
) 40 . N
5. |
What components are activated by the instructi
.) - | | %
IF (A-B) 12,13,12 ?
1. load A % : .
2. subtract B !
. 3. branch o -) N .
234 - .
4 ! s . e _ _____,_Q_S-oe _'_.

gt PR

4

EX - - oy ST N T | ! b s g me -

\

Refer to UNIT #16 ACTIVITIES TABLE for more N

information.

s)UNIT #10 (COMSC) was concerned with loops and

methods for executing loopé in Fortran. The exawple

e L R : [

17

W

SUM=0.0
DO 17 I=1,N

SUM=SUMHX (1) .
CONTINUE -t

~

illustrates a loop in which the addresses assoclated
with the array vari%%l@ X are modified successively.

Recall that X(1).i1s the address of the first element
/W

of the X array, X(2) is the address.of the second

’

element of the X artay, etc. A computer must have
the ability to computegaddresses of array elémants

ensily. One method of calculating addresses is to

make use of a special register (or set of registers)

called an index register.. The address of the array

X is held in the imstruction; the index is held in

the index régisngr; the éddress of X and the value in o
the index regist%r-aré added to.produce an "effective |
address” that ié used to reference the. location X(I) .,

in memoxry. ~If a memory reference instruction iskto'

use an index register, an ihdicat@r must be set in the

instruction to that effect sometime prior to the exe-

%
v

cution of the instruction. For the statement

235

¢

SUM=SUMH+X (1)

' 16,19

a schematic of effective address calculation, assuming index

register 3 contains the index, appears as follows?'

. instruction index affactive
instruction address register 3 address
load accumulator from SUM | suM T SUM
add to accumulator from X
modified by index register _ _
3 \ X i X+1s
store accumulator into $ SUM i . SuM

» _ :
?he increment step of the DO loop modifi

es index register 3 and

Y

also tests index register 3 to determine vhether the loop has

been completed.

‘can be represented as follows:

Symbolically the effective address computation

where

IR

" e

&

T

-

‘AR is the addreaa‘rﬁgister,
IR 18 the index reglster,
EA is the effective address,

236

rhnhu’w."“"‘*" . ,_q

TN A |

B L sdae o W - TRALT () R

e o Do ST IR

16020 A

i By

The EA is enclossd in a dashed box to indicate that it does not -
appear In storage; rather it is created, used, and discarded un-
caramonibusly in fractions of a microsecond.

The Fortran statements -

X,

S

X(J) = Y(JI)+A(D)
57| | CONTINUE

i

,
illustrate more graphically the usefulness of an index fegister
+ in effective address computation. Suppose index register 2 con~

' tains-the index J. Fill in the following table that simulates

effective address calculation.

instruction indek effective
address register 2 address .
Y i ¥ g
s A j
X - 3

.

»

In this case index,regiSter 2 is used in three effective addrass

L4 v L}

computations.
" \j
. How many index registers does a computer have? That depends

it

on thé spgcific computer. Some computers do not have index registers

. othargwhave“chrea, others have eight, still others have fifteen. s

<3y

16.21

.

The 1130 has 3.1ndex reglsters; the 360.h@3 15 registars
that may be used as index registers. One must be able to
86t an index register to an initial value, incrém@nt (ox
decrement) an index régiat@r, test an indox reglster,
branch based on the test, and store an index regiatgr.

Such capabilities are impldmented differently on different

machines.

U R o e o

Other hardware features include base registers, in-
&

direct addrassing, floaéipg point registers, interrupt
" facilities, ioput/output channels, &ultiplaxor éhanﬁéla,
control units, peripheral proceasors, memory locks and
keys (also called memory protect), and ;elocatability.
Many of these topics are covéred in a course ih agéémbly
language programming; others are covered in tgopics in P
;ompucer organizgtion.
The éypes of data a computer allows are an impo?tant
. . kay to itg éharacéar. The éet of operations which a com~
puter performs 1ls another basic indication of its charac~
tef. The IBM 1130 hgg aﬂbgaic 1ns§ru§tion set of 29 in-
sérﬁctions, while the IBM 360/65 has\béer"140 instruct#bns
and the IBM 370/165 has over 160 inatrucgionsl Subsets

of the instruction set pertain to specific hardware func-

, tions. Several of these_ functions are listed below.

o~y

=

IRy ‘2 > ’..(Saaten e |

16.22

function . instruction types
arithmetic 1oading a register, storing a

reglster, addition, subtrac-
tion, multiplication, division
in binary integer, floating
point, and decimal, round, com-
pare

\ - &
index register load index, modify index, store
Jdndex, test index, branch on
" index ‘ '

test bit, lasert bit, shife

register left, shift register

e right, rotate register, store
bit, and, or, exclusive or,
mask, test

- bit manipulation

N character manipu- move character, insert charac-
lation tex, test character, translate
' - character, edit character

input/output Initlate I/0, test X/0,.test
channel, stop 1/0

miscellaneous laterrupt processing, storage
pProtect, error recovery

Since computer instéuction sets vary widely, not all cdma
puters will contain all Qf these functioms, _If & computer does
noﬁ have flosting point hardﬁaré, floating point arithmetic may
be simulgted by a program. The resulting simulation is a great

deal slower in execution spead than hardware would be, however.

‘Mozt of the functions listed above may be simulated by programs

1f they.do not exist on the pa;ticular computer. Exceptions
are input/output and’interrupt.proceasing. These may be quite
diffioult or impossible to simulate 1f the hardware does not

exist on the machine. Many of the hardwaretfeaturaﬁ on today's

computers wafa'aimulatad by programs on earlier computers. In

239

16.23
fact, nultiply and divide are sinulated to this day on some
computers by-making uge of repeated additions And ahifta‘in_
the first case Qnd by repeated subtractions, tests, and shifts
in the second casal! Those softwara simulated featur@s_that

"provéd useful were incorporated into the hardware of later
maghin@s. F%pating point, index reglaters, character manipu-
lation, storage protect, and interrupt processing are a few

“

porated into hardware.
SELF EVALUATION: Suppose?azggwputer as a 4 bit accumulator and a

PO

four bit accumulator extension. Suppose

0 OIIrrrInm
L

Act ACC EXT

+ the contents of both ACC and ACC EXT can be shifted
left by 1. Suppose the leftmost bit of ACC rgpi;ces
the bit in L after the shift. Suppose the L bit can
be tested for 0 or 1. Draw a flowchart to simulate
multiplication by addition by loading the multipli-
cand in ACC, shifting left the ACC and ACC EXT one
position, testing the L_bit.“ If the L bit i‘%l, ;ﬁé'
multiplier should be added inta ACC EXT. Théﬁpioduct

N

appears in ACC and ACC EXT.
N -

<

"~ examples of software simulated features that have been incor-

16.24

Answer:

=Pl K=0
, | : ‘ \.. . Load multiplipa;d into ACC,
¥ Shift left one.
K=Kd-1,

Is L bic 17

P e

Add multiplier to ACG EXT.

No

Is K=4? *

Store product

'ASSESSMENT TASKS: Raportﬂpp‘youn.instructéf‘and discuss the

T

assessment tasks with him,

4

- : . "

WHAT NEXT? You may do either UNIT #12 or UNIT #14. If you have
complaeted 12 and 14, then you should be ready for

UNIT #17, the last one.

R

s

S adst S = Sl ol = S e ! e 2Bt K et P - e g g

UNIT #17 {(coMSC) -

[

TITLR:s General Fortran Programs ‘
RA&IONALE: Constructing general, efficient, accﬁrate and skillfully
done éomputer programs fortsolving problems 1ls a worth-
“while goal for any programmer. That goal also happens
to be the overall oﬁjectiva of this course.. |
. You should by this time have developed considerable
expertise in constructing Fortran programs and rumning . ‘ »
them on the computey. ﬁow fou should put that skill teo
use in a %airly aophiati;ated problem sdiving sitﬁation. ' ‘ .
OBJECTIVES: At the end of this unilt you will demonstrate your
.ability to'aolva‘problems efficlently a?d:acéufatei§'f
using Fortran programs that you comstruct and a com-
puter, |

.PREREQUISITES:‘ If you have chosen the option of trying for an-"A,"

L then UNITS 12, 14, and 16 éra requifed. If you héve AN
, ‘ | o ‘ chosen to try for é "B," then only UNIT 12 is re- — | ‘
quired., v | |
© ACTIVITIES: | , - - f

A, . Some éeng;aliconsidefatiogé :) | .
A \ ‘A Fortran program of optimum worth is ome that is
accurate and efflcient. Some of-thé considgfationa_rag;rd-
ing accuracy ware discﬁased in UNIT 12 and will not be

discussed again in this it Rather we will focus on

e A e 8 e e e A i

SEhaasiathiiatatio ioses b “otevs g - D 2 P B i o T T N A B AT T 18+ oy R STy o et T Ly g

An.afficient program is one that uses the compﬁtar'a

-

capabilities to thae greatqgt;advsntage. Efficlency suggests

in p§réicular that the best poasible use be made of the com~

puter's storagelwmd time. Execution time, compile time, and

required storage should all be minimised with reapect to each

other, 8ince these variables are all interdependent, minimiz-

Letfgunotice.some'of the factors involved in efficient program~

»

Length of program. A érogram that is longer than_
necaessary will prgbably raquire nore co@piia timé,
more execution Aime, and more storage for the o£ject_
code. As the program 18 -shortened, these variables
will bené to decrease. If, hbwever, the prograﬁ is

made much shorter by combining statements and operg-

-~

tions as much as possible, the compile time will

tend to.increage -«~ in some caseg, drastically; the
required storage and execu}ion time may also be
increased. I; ig importanx-éo“réalize'then that
the shortest program is not necessarily theiﬁest.

-

Sequence .of operations. In general, the more
S « e

17,2
efficiency.
ming.
¥ 1.
r'Y
2,
%

oparations the computer has to perform, thé’gfeater

will be the execution time. Unnecessary operationg--

such as-transfer to snother transfer statemang and

<

~ then to another statement, rather than a direct

tramsfer to the last statement mentionad -- should

o

ing one may increase another; some compromises will be necessary.

3 S
v\ o W . - -~

'17.3

Cm———

always Pa avoided: “Arithmet it expreﬂeionalshould,
in general, be arranged ;o that uhnecessary opera-
‘ " tions are not performed. (Not only dﬁ'unnacaésary ' \\,
operations raquire extra exagution tima, but also
L ‘ accuracy ia reduced, as discuasad in UNIT 12)
The same is true for assignment statementa. {For

n

~example, XﬁO requires integer zero to be conyeyped

T T e e S e 2

to real zero before it is storedbinto X. X=0,0 . - i
_ requires no uﬁnecasaary operations.)
o . R Input and oubput. In gen@ral any kind of 1/0
raquires more ex@cution time than. inuernal mnchine
operations. .A program may become "I/O bound,.)'
' : that is, the computer ih héﬁing to use much Qﬁ*its
execution time for I)O to occur, Iﬁ is very eaaﬁ,
/: : for example, to dause thé_ilBO‘with a typewriﬁerh ' 'n

4 : . T . 3)
ptinter to be I/0 bound, since the printing is very

VAl

slow. - The 360 handles 1/0 much wore efficlently ﬁ§

N
(S B
W

w process in which I/0 is performed through intér-
mediate magnetic disc storage which has é very small
access time. Therefore, I/0 does not slow the 360

very much at all. kven so, excessive I/0 shod&u\gs

-

avolded,

[

4, Storage for variables-and arrays. When reserving
;\\ ' étorage fof arrays, you should gse-bnly as much

space as necesaary. 1f you can avoid-the use of

. *

_arrays, chat may be-even batter, an'aa £

variables as possible in a program. Yor example}

- . ﬂ‘

it
%

- - -
' uge one vafiable for the index of all dﬁnested DO
loopa; For another example, consider the program
segments in Figure 17.1, which find the average ofél
oh array of numbers. .The one on the right makes
7f better use of storage by having lesé vartables than
; ‘5_ the one on the left. ,(Reuse variables whenever
lpésaible. R

SUM=0, 0 .. - AVG=0, 0
DQ 1 J=1,N _ _ DO 1 Jwl,N
SUM=SUM+A (J) R © ' AVGmAVGHA (J)
1 CONTINUE : : 1 CONTINUE
XNw=N ' o . XN=N
AVGwSUM/ XN , . "AVG=AVG /XN

L

Figure i7.i.- A program segment for calculating
the average of a set of numhers, ‘illustrating
-~ L how variables may b¥ reused.) . .

N
M (%4 B ’
N . .)
.

3. Mixed mode. If mixed mode'qrithmetig 1933vailable, "y
. : N ' '.D’.; ! ’ '
usually it is slower thaa arithmetic on a single

. . _) modea. S;qca mixed mode'arithmgtic requires ékkra ..
‘obetationsifor chgnging all operands to the same
; . type, in geﬂeialﬁit should be avoidgd; gspecially“
if the exp}éssiog is in a loop. Examine thé pro-
. \ _ e ‘ gram segment 1n.Figura 17.2, which genéfgtes a
| table of x and y values for the equation

a . 5

(L3N

oy o 3% - 2% 4+ 5y = 2.

i

.
% - | ' Since the calculation.of y occurs in a loop, the

\ . . . ’ X
. g,
. - [

3

fu

17.5

Intaeger constants in the polynomial must be conv‘!t—

ed to real constants with eéch”ltaration, increasing

execution time. Mixed mode should not be 'used in thias

expreasion. In fact; there is never any 'reason to'

.) a%
use mixed mode operations in which one or more.of the

‘operands 18 a constant written in a different mode from

that of tha rest of tWe expression. -1
. . . @ ° . -
e g

DO 2 J=1,50
. READ(5,10)X
Y ® 3 % XKRF - 2 % XKR2 4+ 5 K X - 2

THE EXPRESSION SHOUL® BE WRITTEN
Yim 30K XR3 - 20k X2 £ 5% X - 2.

x,

L]

OO0

WRITE (6, 10)X, Y SO
2 CONTINUE
10 FORMAT 61X;2F10.2)

A

v o £

Figure 17.2. Program’segment illustrat¥g an
inefficient mixed mode expression, (Notice that

X%*3 is not mixed mode.)
_ \\\ - \ .
?ﬁere are cases in which mixed mode 1s definite~.

ly advantageocus. Refer to the program segment in .
’ . ' - T :

Figure 17.1. 1In the calculatfon of the average where

AVG/XN is'eValuated, cgmpilg_time, execution time, e

and storage requirements for variables and the object
code wpmld probably he raduced by UQing the mixed " e -

mnode expmssionAAVG/N, gince the st:at_ement XNaN ig L. |

Yabsent an% &oas not have to be ig‘:gmpiled, atdred,

an& executed. Besides that, storage for one less B

.
. .

=

‘variable (XN) is required. Mixed modé may be

useful, then, when both operands are variables
and the exprassidn i1s evaluated only once (or
very few times) im the program., . If, ﬁowever,

¢ v ¢
N, for example, were to be used several times

as an arithwmetic operand in one or several mixed

-

-mode expressions then,probably addition of the state-

Mixed mode is useful when used with discretion,
Inteéer arithmetic;; Intéger (fixeé point) arithme-
tic is considerablz faster than real (floating
point) arithmetic, since there is no decimai point
to keep track of. Integer arithmetic should be
ugsed whenever possible, and gspecially all counters
;houlé be in integer mode, \

DO loops. DO logps may or may not require extra
compile time and execption time, depending on the
compiler. But, as a general rgle, as few DO state-
ments as possiblglshopld be used in-a program. For

example, instead 6f.using two short DO loops, com~

bine the two into éagingle loop, if posq}ble. In

e

.

Figure 17.3 tﬁa;e‘aﬁé two program segmeﬁts for
finding .the sum and the sum.of the squares of the
elements ofian array. The one?on Fhe left uses-
two DO loops, maki?g two passges throﬁgh the array,e

while the one on the right uses only one loop and

makes one pass through the array. The efficiency

“mént XN=N"and subsequent use of XN would ‘be better. .

A

has also been improved slightly by using the
multiplication operator instgad of th@'e#ponane

tiation operator and by elimimating the CONTINUE

statement. .
) ‘ '
3
C INEFFICIENT PROGRAM \\\‘ C MORE EFFICIENT PROGRAM -
S“0.0 -~ ' S"‘"0.0 -.
DO 3 K=1,N - . $5Q=0, 0
S=S+A(K) © DO 3 K=1,N
3 CONTINUE S=S+A (K)
- $8Q=0.0 | ‘ 3 SSQ=SSQHA (K) *A(K)
DO 4 K=1,N : .
S5Q=SSQ+A(K) **2
4 CONTINUE _
*®

Figure 17.3. ‘Program segments for finding the sum and
the sum of the squares of the elements of an array.

'3

o -
-

- Y arev m—
o - me—AD—Cait~— .

Another important rule is that you should
never put unnecessary obef@tions inside loops.
Figure 17.4 1llustrates an unpecessary step,

 XN=N, that must be performed needlessly N-l tiyes, ’

haéing-a,neéd to be performed only once.

1

1?08

C UNNECESSARY STEP
C INSIDE A DO LOOP
$0.0
HO0 6 K=1,N . o
XNeN .
SmG+A (K) . s
6 CONTINUE
AV=S/XN ‘

L

. Figure 17.4. Program segment for finding the . __. . _

average of the glements of an array.

8. Storage of character data.- Character strings .should
be stored so that the maximum number of characters
1s placed into the storage locationé.‘ For the 360,
in single preclsion a waximum of four cﬂaractars is
allowed (eight in double-prgcision), while on the

© 1130 it wmay be.four or two,adepanding'upoﬁ whether
the storage location is asgoclated with a real type
or an intggar type, ;aépéctivaly. If you wish, T
however, to make use of single eharacter data in
- a program;-tban you will have to store Just one

character per storage location. (There are ways
around this'problem,.but they are beyond thé scope
of this course.) : | N |

There are many other factors to be considered in various

situations. But our main purpose here is just to give you

a. feel for some of the'prqblems involved. Be aware of these
problems as you'construét programs ; tﬁy to minimize all three | -

variables -~ compile time, execution time, and required
' ’

<

2'"‘9 o

B.

- C.

17.9

storage -- simultaneously, raaliéing that compromisgg will B
be necessary. | " .

. The 1ncendad uses to which a program will be put alaoh
dictate what_additional conpromises méy be necessary For
ekample, a program that is desigped to be run on any computer

cannot make use of "short cut" options available on some

computers., Unless a program is definitely intended to do a

“specific “one shot" kind of task, it should be constructed

to handle general cases rather than specific cases. General
programs -probably will be longer than speciﬁic Erograms, (a\
however; and they usuall§ become longer as they become more
general, Several compromises will be né;esaary, therefore,
as a program is ganeralizéd for broader application to a

wide range of computers and &imilar problems. Fur%hg;mdre, g

" compile and execution times as well as storage requirements

A d

for a given program may vary markedly with different computer

systems and with different compilers used on the same computer.

*

Some specifics.

Refer to UNIT 17 ACTIVITIES TABLE.

Someone else's ideas,

The fbllowing material is reprinted from the wgterlqo ‘

University Newsletter, September, 1970.

The following is a list of hin%s on how to optimize

FORTRAN coding in order to achieve better'accﬁrad& in

calculations and to increase the sbead of execution of

2 . : - : . *

250

A, . el x 1 P — [LT W, [- T O e e S N AR e v

17.10 | .

programs in general..
1. Thionk carefully about the pfobl&m before
programming. If you are unsure of the
techniques involved, make a point of see-

ing someone at the Information Desk. In

) parklcular, make sure your program checks

. . —
out dn the following points: ! -

a) The program does exactly the job

you want it to do.
s

b) Input and oufhgf;ére in the most

N
. convenlent format. .
') c) Today's results will be understsnd- ~

able in six months' time without

having to re-run the prograﬁ?

- d) The program structure naturally y
reflecta the problem atructure,
thereby being easier to code and

debug. .

-,

@) The program can easily be extend- o :
' : aed to cbpe‘hith an ‘extended version

of the problem,

v ¥ ' 17.11

F

2. Use DOUBLE PRECISIQN arithmetic in critical calculations
wharevar‘apaca allows.
3. Use a minimum of mixed-mode arithmetic. The extra coding
i generated qandln some cases take wmore time to execute

than the arithmetic itself.

[S N T/ ld}_ us ing SUBROUTINES _'aiid'.' TUNCTIONS for amall Yepeated —~—— — — 7 77

taska,

2>

9. Arrange the program_logic to.avoid branches whenever
possible. i
r ' 6. Make thé most probable result of all LOGICAL IF statements
a simple drop throughuinatead of a branch,
7. Use LOGICALtIF'a1}n$teif of ARITHMETIC IF's.
8. Choose varilable types to avoid conversions (1.e. mixed
modes) whepever possible. |
9. Reéuce 1npu£~cu§put to‘thq;minimum necessary.
10. Avoid'impliaé.no'a in input-output where possible.
11. . Align‘all COMMON, and EdUIVALENCE statements with variables
. * in decreasing-orderLof}Btoragg‘spacé“(i;e..COMPLEX*lG
| before REAL*8 before .. LOGICALL).
12. Calculate all quantities which are constant througﬂ a Lo

program at the beginning, and calculate all quantities

constant through a loop outside the loop.

'R

DO 20 I=1,450
CATHI ;2% 1L)=D (142, 2*K)+B(2*L+1) .o
20 CONTINUE®,

17.12 | N

should he written:

Mo 28K

Ne2#L:4),

DO 20 J=3,452

C(J+1,2%J=3)m=D {J,M)+E(N) .
20 CONTINUE .

This modification saves 898 multiplications and 899 additions.
13. Store any ARRAY element used more than once, in a loop in a
temporary SCALAR varisble.
14, Use as few subscripts as possible on arrays (i.e. use A(720)
instead of A(12,6,10)).
15. a) Make all on-off switches, flags, etc. LOGICAL*].
- . e.g. DIMENSION X (500)
T LOGICAL*1 OUTPUT
READ3,0UTPUT,N
3 FORMAT(L1,I5)

e

IF (QUTPUT)PRINTY, (X(I), I=1,N)

¥+

Y, ~'b) Make all test varfables (3;way or more) INTEGER*2,
. . .a.g. INTEGER*2 BRANCH
READ3 , BRANCH
3 FORMAT(13)
IF(BRANCH)7, 304,82

;;/,;

&Y
3
o

RRARA Bk i = B e

l(. — 3

Here, only 16 bits are tested in the IF statement,
whereas the use of a 4-byte integer variable would
n@casaitgte the teqﬁing o% 32 bita.

16, Use assigned GO TO's instead of computed GO T0's,

17. a) Use LOGICAL IF's instead of 2-way GO T0's. B

-

‘e.g. Inefficient oo
IF(DOG)14,23,14 1F{D0G,EQ.0)GO TO 23
14 XmX+1 X=X+1 :
23 XewX-1 | 23 XmX-1

b d .
Using a logical IF here is more efficlent because it

generates- less coding and .executes faster than the
-arithmetic IF. i
\

bY Use ARITHMETIC IF's instead of 3-~way GO TO's.

e.g. Inefficient Efficlent
IF(TEST.EQ.0)GO T0 1 IF(TEST)3,1,5
IF(TEST.GT.0)GO TO 5 3 sToP
sToP 1 Xw=X41

1 XsX+1 5 PRINT2,X
5 PRINT2,X 2 FORMAT(F10.3)

2 FORMAT(F10.3)

- .
[-
-
. s
. - -

For the same reasons as in (a), it is more efficient

.

to vese an arilthmetic IF here.

CeEPFfefent T T

17.14

18. Using IF statements to determins conditional branches
is less @fficiené than using assigned or computed GO '
TO's. The computed GO TO uses more overhead time and

g . space than the assigned GO but it still is better than

an IF statem@nt.

19. Where possible, pass variables to SUBROUTINES through = . _

COMMON instead of using parameter lists; this saves
much time because addresses do not have to be passed

down to the subroutine for the variasbles in the call-

ing sequence. (%
20. Do not test for equalitly using floating- point variables,

©

because of roundoff error in low“oxder bits. Use .GE,

L]
-

or .LE.

21. Use SQRT instead of %% 5, aincé%tﬁé SQRT~rQu§;ne is
faster than the logarithms routine used to evai;ate\\
expressions of the form X**R. ‘

22. For small powers, use A*A*A -v. Or A% with I=R instead
ofrA**R, where R is a floating point integer; values
raised to integer powers'are computéd by repetitive multi~
plicmtfbna, whereas values raised to real powers are
coﬁputed by using logarithums. .

23. Use unformatted I/0 for scratch units; FORMATs waste time

and spacé. B . N ‘

\

24, Always debug programs under WAIFIV; the compilation time

f 255

25.

" unchanging routines in such programs should be compiled

% 17.15
o

4

L

is faster and the error-messages are useful.

Production-type jobs (i.e. those large-core and time-

consuning jobs which arg run frequently without éhang-

ing the sourcé prbgrém;i,grmp@rhaps with changing only

. ¢4 <
one subroutine) should not be run under WATFIV. Any

Into 6bject decks under FORTRAN H. Runnifig under FOR-

TRAN H will decrease the execution time/
/

i

SELF EVALUATION: Pages 17.18 ~ 17,21 contain programs that produce

the same end results, but they'éary coneidérably
in how they obtain the re&ggts. |

° ‘Here is the problem to be solved: wmake a
list of the names and ages of all people who are
betwveen the ages of 17Iand 2l and find their
average age. Assume that you have a set of data

cards with the following information punched in

each card: o o :
Name, columns 1-20 ﬁgﬂffﬁﬁ

Social sedﬁrity numbeyr;, columns 2&*31
Age, columns 32~34, right justified s
Place a blank card at the end of the punched cards

as a signal chét all the data have been processed.

P e

- Examive both programs very careflully and
determine what advantages and disadvantages may

"exist regarding the efficlency of each program.

256

T g

]
N 3
’ <

— . Record your observations in the spaces prov}ded.»
On the pages following the programs somg‘possibla
obsarvations.ars recorded so that you can check -
yo;rself. If you made observations that are not

listed, then discuss them with your instructor

to see whether you are cqrrect.

B ,.;_____ummthgwpnpgrgmgmwgr@m;unugnwﬁﬁﬂnwAIEIM.mucnmphrem;wmm____

the sxecutién and compile times and the storage
requirements of the two programs and harmonize
them with your observations, 1f posaible. {Your'
observations may be correct regardless.)

Notice in particular that these programe

w "

were executed with just a few data cards (actually
10, 5 of Which did nof qualify for listing). If
the programs were used with 500 cards, or 50,000

cards, would your obsetvations still hold? Does

the number of data cards, in fact, make any dif-

¢

P I
-

" ference in compile time? In’execution time? 1In

storage requirements? , P

. What about the compatability of the two
programs with the 11307 Just how general are '

bl

the two programs?

These are some oﬁ)the questions that you

nead to answer as you make your observations.

A

‘ il

The following pages contain the programs

EVALUATION section,

for the SELF

3
®
¢
\ i
a-
.’
- &
- ‘.
'
-
¥
.
v
#
*
i x
.
b
-
L]
1 - LA)
Y o ' "
. .
» - . .
. N
. '\\
L] .
N
v 2 1

17.17

n
N
°
“
L
“
]
1

TR R TR

17,18

LYVl O

o

D&

10
il

94
13
14
15

lo
17
14
1%
20
21
£e
£3

L4

A WIH: (Roan -
G Sy
C ———-- PRUGKRAM)| =mmwme . | SR TR
¢ "'\'\w‘ .)ﬁ”"; %
¢ THIS PRUGRAM MAKES A LISTAING OF PEOPLE wHOSE WGES ARE ;awao ‘
C AND ALSO CALCULATES THEIR AVERAGE AGE.
¢ 4
G i %*#G*wﬁ**w&#‘##*###**#0***%ﬂ'*#t*t***%**t*#**t#tt‘
¢ - : w °
o * LEST OF VAR!AuLtS ‘ *
C € ' DATA - ARRAY CONTAINING NAMES IN FIRSY »
G - . FIve COLUMNS AND AGES IN COLUMN . *
C * SIX *
C . . KOSUM = USED FUR SUMMINu AND CALCULATING *
o ¥ AVERAGE *
C » SUM = REAL EWUIVALENT uﬁaksun *
¢ * N ‘- COUNTER FOR NUMUER UF CARDS READ *
C * K = CULNTER FOK NUMBER UF NAMES ON %
¢ U CFRECLIST T ¥
C % In ~ CARD.READER LUGICAL UNTT NUMBER *
¢ * LP ~ LINE PRINTVER LJUGIGAL UNIT NUMBER #
c- e ’ ’ * !
L *****ty###t****#&#*-\##*#**##,***##*v*.#**#w&***#**#
¢ _
INVEGER DATA(200,61)
DATA INLP/2,0/
CATA NyKyKSUM/3%0/ .
(v o o e WRITE HEADINGS. ™
WRITE(LP, L) . .
Cormemamm— "PLACE DATA INTO ARRAY .
RO 90.1=14590 ' '
READUIN QM DATALL yJ) gl ,6)
Qoo CHECK FOR LAST Carw. .
LEAOATALT v6) o EQe0)GU TU 10
NzN+]} s
90 (ONTINUE .)
Crmimmm==e SUAN AKKAY FOR AGLS IN THE RANuE L8-20.
10 0J 91 1=1,N
LEQUATALL 461 40T 220 UKLDATALL,0)oLT.18)G0 TU 91
o e e v s e e SUM AND CUUNT FOw FINDING THE AVERAGE.
' -KER+]
KOSUMSKSUMEUATALL 0)
WRITE(LP, 3Y{UATALI rJ) edule6)
9L CUNTINUE ’
R CHANGE INTEGER SUM Tu REAL FUR CALGULAT INL AVERAGE.
. - AHEN CALCULATE AVEKAGE AND KUOUND TO NEAREST INVEGER.
SUMsKSUM
KOSUMESUM/ K40, 5 .
Lommmmamaa WRIFE AVERAGE AGE. -
ARITE(LP, 41Ky duM
STuP ' .
C@ﬁm«%m“mw*@ﬂm”mhw#*ﬁ”ﬁ s) RS B o S P e S T G S o B R T S S5 A AR Y e R ek S VB et 24 S VMY D NS T GNP D GV oy e o
¢ + FORMAT STATEMENTS.
10 FORMAI(/’ LIST OF PEUPLE WHLSE AGES ARE 18<20%//
1 NAME AGE A
P FURMA'(ﬁAlelX:lﬁ) ' . .
3 FURMAT(OXe5A4,3X012) ' .;
4 FURMAT (/% THE AVERAGE AGE OF *,15,¢ PEOPLE 1§ *,12,*
L@ummﬂwmuw*mmﬁw*mmﬂmmmﬁmmmmmmmﬁm& m—mmﬂahmmmmﬂ*mmn—wqummmummaﬂmu;
) Z?F)

END

[
.

$ENTRY

' N RS = = v g = - 7 Banca L . S S] <
. . N .
. . . L]
- . y . -
d . . .
~
« .

LIST UF PcuPLE wHUSE AGES AHc 18-20

NA Me ALt : o
DY [-
BLOCELYLCLUOLGBOVODD . 20
FFEFEFFFFFFFEFFEFFFF L8
GHLELLLLELLLLLLLLLLGG 19
hERERHHBHHEEHHHRAHHA 18
~ 7 IRIERRIUEIEIDRNEELNL. 20
THE AVERAGE AGE gF 5 PEUPLE IS 19
- LURE USAGE - UBJECT CUDEw . / 5736 BYTES ARRAY. AREA= 12000
/ ' :]
COMPILE TlMea Vo83 SEGC EAECUTION TIME® . 0.14 SEC, WATFIV
ﬁ ,
Q .
. {
i~
Possible good points . ' Poasii)le_ bad fxoint;s
¥
\
260 * x
~. g .

L N pee

+

Lo

i7

A8

19

20

2

CoCaoon

bJ LB
««««« P

THLS PkUbR
ANQ ALSU &

2

OO DO At e

%

_INT&utR
» LIMENST

DATA !N,LP/S.bf AVGYO .07 4NZ70/
o G e e Py

GU T
Cmmmmmmme RE
10 READ

I
(oo e “UN

PR
139 1
1 I

o e SU

OUTPUI

_ HEDL
100 B 'S

GU Ty 10

C L1 wE

-y
*
%
»u
*
x
W XN~ THE REAL EQUIVALENT GF N
L%
W
*
-3
%
R

KULRAM 2 ewww-

AV MAKED A LISTING OF PEUPLE wHUSE AG[S ARE 18~-20
ALCULATEY THELIR AVERAUGEL AG&.

#***&*####****##*#***#**#*&**&*#t**#****#**#**%*_

LIST OF VARIABLES I
 NAME, - PEKSUN'S NAME = - ;
SSN = PERSGN'S SOCIAL SECURITY NUMBEKR
AGE -~ PLRSUN'S AGE (INVEGER)
N = COUNTER FUR NAMES UN THE LIST

<

A\

® % B 8K REES

IN' = CARD READER LUGICAL UNIT NUMBER
P ~ LINE PRINTER LOGICAL UNIT NUMBER
AVG. "~ USED FOR SUMMING AND -CALCULATING ¥ . .

AV ERAGE *
' *

*##**#**#**#**********##**#**t**#***t********t*
AGE -
UN NAMEL10),55NT L))

T LUT HEADINGS.

0 100

Au DATA CARD.
{INe2INAME s SSNJAGE .

(mommemdee CHECK FUR LAST CARD, Ab& IS ZERD UN LAST GCARD.

FLAGEY2Q 320413
ENCUOUNTERING LAST CARD, CALCULATE AVERAGE.
AVG= AV G/ N
ND AVEKAGE . TU NkAREST lmrEuER.

AGE=AVG+0. 5 \ '

6C Tu 102
LCESS CARD. LHECK Fua AbES IN THE RANbE 18-20,
FOAGE~210 01,100,100 -
FLALETLTIL0,10,12
M FOR AVERAGE AND COUNT.
. AVG=AVGHAGE

'N3N+l ¥ -

TU 101

INGSo-, - .
Kth(LP!l’ o

w»

GF LIST.

» 101 © WRITEALP s3) NAME AGE
Gu TO 10

© . AVER

AGE AGE.,

102 WRITE(LP, 4:~.Acc.”

2 :
o S

TOP

'c FORMAY

¢ . INPUT

", 2 FURMAT(10A2,11A1,03) . 20, s
C o oueuT. <6

s

E

STATEMhNISc.

22) FORMAT(/* LIST UF PEUPLE WHOSE AGES ARE 18-20%// 17.21
- 1 ' T NAME T AGEY /)
23 3 FURMAT (bR LOA2¢3X, 1 2)
2% 4 FORMAT(/" THE AVEHAut AuvE UF ’0559 PEGPLE 1S *s12¢%a%)
C eee
25 ©OEND oo C
$ENTRY
J -~y

LEST CF PEUPLE WHUSE AGES ARE 18-20
NAML ., AGE : N

D02V ILODULDDDLLDVVUVY 20
FFFFFFFRFFEFFFFEFFFF 18

GGLGGGGLGGHECEEEGEEG6 19 | co
HHANAHHHHHHARHRHRHHHH 18 : '
S BT 5020 - o i i
THE AVERAGE AGt OF 5 PEUPLE 1S 19.
CORE USAGE BJECT COUE= 5560 BYTES,ARRAY AKEA= B84 BYTES,TOIAL AR

CUMPILE TUME= Q.74 SEC,EXECUTIUN TIME=~ Q.14 5EL, wWATEIV ~ VERSION 1 L

Pogsible good points) : Possible bad points

-

e etk n el) TS e

17.22

Some Observations on Program 1

Good points. - .

Bad

Line 13: Integer arithmetic used for sumnming.

Line 8: Integer counter used.
Lines 2 and 3: DATA used for initializing constants rather
than assignment statements.

Line 7: Logical IF is faster than arithmetic IF.

Linea 13 and 17: Previously used variable KSUM reused, conserv-

ing storage.

a

Line 21: Maximum number of chavacters stored per storage location

by using A4 fields. -

Line 17: Good use of mixed mode.

poinﬁs.

Line 1: &sing a twéndimensional array makes program less general
and uses a great deal of stor§§e. A large number if
cards could not be proceséed using this pr;éram.

Lines 3 and 10: The two DO looﬁs could be combined ingo one,
| making the use of a two dimengional array

unnecessary,

Line 11: Cémpound argument in logical IF may be slower than

i two simple logilcal IF's, .

Lines 11 and 13: k'new nonsubscripted variable should be set
up to replace DATA(i,6) in thaée statements
since refeiencing'tha éﬁbscripced variable
three times s tlihe consuming.

Lines 9 and 15: Removal of CONTINUE's would reduce the number

S ' 25"3'_ |

CTEETRTEY = - Y =y = e ey =
™ g = v N Sves N L TN

') ‘ . 17.2-3

of executable statements. !

)

Ao Program ds not\compatable with 1130, if that
‘0
. . natters. '
- Line 8: Counter not neededj index of DO should be used rather
than separate counter.
\ ’ . - ~
v .
- " ‘-
g
}
&
£

@" N .) \/\

< 17.24

- Some QObsorvations on Program 2

" Good points.

Bad

Organization of program is convenient, having all output state-
4

ments , together,

Program can handle an unlimited number of data cards,

" Can be used on the 1130 by changing 1/0 unit numbers in DATA

statement.

Lines 7 and 12: Uses-AVG for storing both the sum and the average,
reducing the number of variables.
Line 7: Mixed mode is better than usiﬁg

XN=N ’
AVG=AVG/XN

assuming mixed mode capability, of course.

\

.Liﬁé8\5 and 17: Program requires a-great deal of I/0 in the

*

loop and will prob¥ibly be I/ngéund on the
1130. This may not be bad on the 360, however,

The alternative, placing the data into an array,

& . .
may require large amounts of storage.

ILine 3: DATA statements used for initializing constants. .
. . S &%_.

- n

points, -+ S

Novel organization requires excessive number of transfer atate-

[1

~ments. A

4 . ’ ﬁ ‘ - . ’ \
Line 12: Mixed mode expression in sum is inefficient, TBea;des,

A

s ¢

o

L

the summing should be in integer mode.

Line 5:

be read.

Lines 2 and 21:

<

The social security number is never used and shouldn't

K
Storage of characters is not efficient since
only two characters per storage location are

uaed for NAME and only one for 8SN. Since,

characters is allowed on the 1130, this makes
the program compatable with the 1130. It

would be better to use REAL NAME(S) and 5A4

lon both machines.

Lines 6, 10, and 11l: Arithmetic IF stﬁfg;enta are slower than

logical IF's for two-way braﬁching; but,

if compatability with the 1130 is important,

then that is a necessary compromise.

_however, NAME is integer and a maximum of two

i

i o e ST AR i s it

-

17,25

5 T AT T o T ey, S 'R
——— = ety T ! R e TR | A AN et

17,26
ASSESSMENT TASKS: If you are trylng for .a "B” in the course, then
you will be required to construct a Fortran pro-
gram to solve one problem given to you b; your .
instructor,
1f you are trying for an "A," then you will
be fequired to construct programsg to solya two
s e e e R probiemsmgiven'tomyou"by'your“instructpr;“”'”““'“'“‘“” o

In elther case, see your instructor.

WHAT NEXT? You're on your own!

ENRICHMENT OPPORTUNITIES: If you are so excited about UNIT 17 that
you would like to work on additional problems, see your igatfdc»

tor. You may wish to work on a project qf ymh&}gnh.but‘éet
e &y

_ the instructor's approval before ybu do.
.) .There are more advanced courses whicg y;u may wish to take.
' A partial list with a brief description of each course is given
below:
. COMSC 2123: Intermediate Programming. .More on algorithmic
problem solving with the computer. Use of

files. 1IBM System/360 Fortran language extén~

sions and Job Control Language {JCL).

COMSC 3223: Digital Computer Mathods. ' Digital computer
approximate solutions of algebraic and trans-
cendental equations, solutions of lineaxr @n&
nonwlinegr eqﬁationé, functional approxima-

tions, least an%res cufve~fittiﬁg.and allied

287y

* *

) % T H = i e B - e e e e LI N WE T U Ry,

17.27

topics. Pracé®cal programming experience in

the applications of these technilques, S .
COMSC 3333: Procedures and Algofithmic Processes. The X
description and programming of numeric and
X non~-numeric problems. The concept of an .
.) , algorithm. PL/I language. '<\ A
. See your instructer if you want additional informstion.
{
i
s .\
Y \.\.
¥
? ¢
s,
- S . 258
A -

APPENDIX I

COMPAKISONS OF VARIOUS FORTRAN IMPLEMENTATIONS

yes
no
no ruling

HE N1 48

B o

-- character set - ..

A- 2 0---9 blankst=%/(), |

' (apostrophe)

statement continuation
lines

numeric statement label
(decimal digits)

variabie name (characters)

data typas
integexr
real .
double precision
complex
logical
Hollerith

= dinteger range

real constant
bagic raal constant
real exponent range
real single precision
(# of digits)
integeyr conatant followed
by a decimal exponent

double precision constant
real double precision
(# of digits) f
. real constant with 'D°
in place of 'E'

!

~ number of array dimensions .

subscript form given by
~ (integer) constant®variable
fconstant .

¥
S e gy

-

Lop

"

LA ¥ | gge
& o ' “ o
IS 5 é? ~ P
} .
y y y y y y
n n Y y y y
19 5 5 19 19 5
' . }

1 to lto4d]| 1to5 |1¢to} Lto5|1to5
1 to 1toS5| 1to6 |Lto6 [Lto6 |1to5s
y y y y y y
y y y y oy y
y n y Y y n
Yy n y y n A1}

y n y y n n’

y n y -y y S
NR NR £(2%11) | £¢2%1-1) (£ 221 (21 5-1)

y y oy oy y y
NR NR 175 75 £75 |39 to +38
NR NR 7. 7 7 7
y n y n n
(TN
NR NR 16 16 16 10
y n -’ y y n n
3 2: 7 7 3 3
y y y y Y y
7 :,; £3f3€? |
1.1 ‘ N

-

'm;“?ﬂwﬂx i ;..‘-'3“'1 .:jp-{"—«-w““q;——'%“ﬁ Lhd AN * = ki = oy ey - S A 5 S s
| 4 : '
T
T

Vit g

- 9 | g
RS ' :
:) m:é? & O
- & < & " & &
& é, 5
H y y y Y y
' ' (literal) n n y y y
I Yy y ¥y y . y
L y n y y n
T n n y y y
X y y y M Yy
Z n n y n
- A format maximum fiald width NR §51 8 4 6
format (parens levela) 2 ‘ 1 3 2 1
scale factor - . y ©n "« LY n n
blanks in numeric conversions :
. high~order zero zZexo zero zero zero Zero
within the field zaro erroy zero zexo error Zero
raal converaions -
integer plus exponent & -
E type exponent y y y y y y
D type exponent y n y y n n
format during execution y n y y n n
. o \
statement functions must -
pracede the lst executable
statement and follow the
specification statements y y y y y y
type specification in a _ &
function statement y n v y y y
'fﬁnction may define or
redafine its arguments y n y y n n
transmit in a CALL
Holderith arguments y n Y y n
external subprogram names y n ¥ y y
" block data subprograms y .m y y n n
specification statements
precede lst executable
statement y y ¥ Y y y
' DIMENSION, COMMON, EQUIVALENCE as ‘ ﬁ
must be orderad n y n. n y 'y
: i : B
extarual funaction may altexr ;)
variable in £QMMON Ly y n . y n n
B T . . had "
miﬁed mode arithmetic (v y y v
.y ‘_\
T 1.2

relations)l expressions

logical operators

assigned GO TO

logiéal IF

DO extended range

READ and WRITE

formatted
unformatted

REWIND

BACKSPACE

ENDFILE

-

formatted records
1st character printed
space before printing

blank 1 line

0 2 lines

1 lst line, new page
+ suppress space

adjustable dimension
common

blank ™

naned

array size declared
external statement

type statement
dimension information

data statamant .

format types
A

D
B
¥
G

*Applies to line printer

. not console typewriter

O

. o o 3
§?£3 : / o 5?53 “
@ @ L gl
5 5 é? ™~
y n Yy y n n
y n y y n n
y - n y y Ly n
y n y y ‘a n
y n 2 n y
y y y y y y
y y y y y y
Ly y y y y y
y y y y y ! y
f‘ y y y Yy - y
n n n D n n%
y n y y Y y*
y n Y "y a'y Cyk
y n y Yy by RAR
y n y y - by y¥
y n y ¥ n n
y y 'y y y y
y n y y !. n
y n Y y y y
y n y Ly y
y n y y n y
y ‘0 y y n y
y n y y y y
Y n 'y y 'y, y
y y y y Y. Yy
y y y Yy 'y Y
v n, y y n . n
W- <

e eamme— =

°
.
0
@
L]

APPENDIX IT
COMPUTER SCIENCE GLOSSARY

s

Ve .

' 11,1

e Tt AV Y R R

. ACCESS TIME

L TO A SPECIEIED MEMORY- anar:om,-—mmmwmmwm\

" ADODRESS | .

COMSC GLOSSARY
PAGE ¥

ABEND
ABNORNMAL END, B

ABSOLUTE ADDRESS
AN ADDRESS THAT IS PERMANENTLY ASS!GNED BY THE MACHINE
DESIGNER TO A STORAGE LOCATION,
’ \iny,

. ;'

THE RERIOD OF YIME NECESSARY TO LOCATE AND TRANSFER THE
CONTENTS OF A SPECIFIED MEMORY LOCATION INTO HORKING REGISTER
OR, CONVERSELYy TO TRANSFER THE CONTENTS BF A RK[NG REG!STER

j'
ACCUMULATOR

A REGISYER IN WHICH THE RESULY OF AN AR!THMETIC DR LOGIC
OPERATION IS STORED.

%

ACM .
ASSOCIATION FOR COMPUTING MACHINERY,

AC RCNY M .
A WORD FORMED FROM THE FIRST LETTER OR LETTERS OF THE

SUCCESSIVE WORDS OF A MULTIPLE WORD TERM, -

ADAPTIVE SYSTEMS o ,

SYSTEMS DISPLAYING THE ABILITY YO LEARN, CHANGE THEIR STATE,
OR OTHERWISE REACT TO A STIMULUS. ANY SYSTEM CAPABLE OF
ADAPTING ITSELF TO CHANGES IN ITS ENVIRONMENT, '

v

A LABEL SUCH AS AN INTEGER OR OTHER SET OF CHARACTERS
WHEICH TODENYIFIES A LOCATION IN WHICH INFORMATION IS STORED,

0 3

" ADDRESS . INDE XING

' THE PROCESS OF CHANGING AN ADDRE'SS IN A MACHINE<LANGUAGE
COMPUTER INSTRUCTION BY ADDITION QF A QUANTITY HELD IN A
SPECIAL REGISTER (INDEX REGISTER), THI S CHANGE IS DONE
AUTCMATICALLY !N THE execur;on OF ‘AN INSYRUCTIDN.

1

N

ALGOL, ’ .

ALGORITHMEC LANGUAGE. A DATA PROCESSING LANGUAGE UT!LIZING

ALGEBRAIC SYMBOLS TO EXPRESS PROBLEM-SOLVING FORMULAE FOR MACHINE
SOLUTION, -

&

Sabed e 3 e T2 *¢ i SN

COMSC GLOSSARY
" PAGE 2 »

ALGCRIYTHM . '

A DEFINITHR, SYEP-BY-STEP RULE FOR CONSTRUCTING YHE SOLUTION
YO A PR EM OR FOR FVALUATING A FUNCTION, ALGORITHMS USUALLY
LEAD TO SOLUTION EF "ONE IS POSSIBRE, ALTHOUGH TIME REQUIRED.
MAY BE LONG OR SHORT, SEE YHEURISTIC.®

»

AL PHAMERIC
ALSO ALPHANUMERIC PERTAINING YO A CHARACYER SET THAY

CONTAINS ROTH LEVYERS AND NUMERALS, AND USUALLY OYTHER CHARACTERS. S

ALPHABETICALLY CRIENTED MACHINES :
- COMPUTERS HAVING INSTRUCTIONS AND MEMORIES ORGANIZED : ST
ESPECIALLY YO MANIPULATE ALPHABETIC CHARACTERS CINCLUDING

NUMERALSY.

\
AN ALOGUE) e

THE USE OF PHYSICAL VARIABLES, SUCH AS DISTANCE OR ROTATION -
OR VOLTAGE, TO REPRESENT AND CORRE SPOND WITH NUMERICAL VARLABLES
THAT OCCUR IN A COMPUTATION; CONTRASTED WITH "DIGITAL."-

| 9 ' [N - “.’-‘

ANALOG COMPUTER .
A COMPUTER WHICH REPRESENTS NUMERICAL QUANTITIES AS .
ELECTRICAL AND PHYSICAL VARIABLES. '~ . ‘

ANALYS IS <

<i;\\ A SEPARATING OR BREAKING-UP OF A WHOLE INTO ITS PARTS- SO AS . |
TO FIND OUT THEIR NATURE, PROPORTION, FUNCTION, RELATIONSHIP, 3
ETC. -

APPLICATIONS PROGRAMMING

THE PREPARATION. OF PROGRAMS FOR APPLICATI@GN TO SPECIFIC
PRCBLEMS. IN DRDFR YO EIND SOLUTIONS CONTRASTED WITH “SYSTEMS
PROGRAMMING , .

-

ARRAY . . | / '
A SERIES OF ITEMS ARRANGED IN AN ORDERED, MEANINGF UL

PA TTERN,

ARTTHMEYIC UNIT) f - -
. THE UNIT OF A.COMPUTING SYSTEM THAT CONTAINS THE ClRCUlTS T
THAT PERFDAM AR!IHMFTIC OPERATLONS. ; :

-

Anr:F:c:AL.thELL;GENcs
REFERS TO THE PERFORMANCE BY A COMPUTER OF TASKS -THAT HAVE
HETHERTO REQUIRED THE APPLICATION OF HUMAN lNTELLlGENCE.

L] . !- b N
o ' | ‘Cu.’tz‘ - lo

Rl kel Eiaskinb ettt Seaiaae i ekt BTN ety TR, B e e R e] s S s v i

COMSC GLOSSARY

PAGE 3
¥ s ASSEMBLE
TO PREPARE A MACH!NE*LANGUAGE PROGRAM FEROM A svnanglc
PROGRAM BY SUBSTEITUTING MACHINE CODES FOR SYMBOLIC CODES. "
' ASSEMBLER '
. ALSO ASSEMBLY PROGRAM A conpurea PRQGRAM YHAT OPERATES ON A
SYMAOLIC L ANGUAGE ‘AS INPUT DATA TO PRODUCE 'MACHINE LANGUAGE
!NSTRUCTIONS WHICH CAN BE PROCESSED DIRECTLY BY THE COMPUTER.
_,A§SEMBLJE§ S . . e
COLLECTIONS OF PARTS INTO UNITS BY. RELATING EACH PART TO‘ALL
OTHERS IN THE UNIT ACCORDING TO' SOME PLAN.
ASSEMBLER LANGUAGE ,
SEE ASSEMBLY LANGUAGE., S
0 l*) ° -
3 ASSEMBLY LANGUAGE L 5 -
| JHE SYMBOLIC LANGUAGE WHICH IS THE INPUT TO AN ASSEMBLY
PROGRAM. = R |
" “ASSOCIATIVE HEMORY
=, A COMPUTER 'MEMORY IN WHICH INFORMAT ION IS LOCATED BY THE
CONTENT OF ° SOME PART OF THE MEMORY., A "TAG® MIGHT BE ATTACHED
TO EACH ITEM OF INFORBATION TG IDENTIFY IT. SYNONOMOUS WITH
UCONTENT-ADORESSABLE MEMORY ,* . .
AUTOMAT IC COMPUTER " - t
SEE "COMPUTER,™ .
- AUXIL!ARV (PER IPHERAL) EQUIPMENT - b
* EQUIPMENT NOT ACTIVELY INVOLVED DURING THE PRDCESSING OF
BATA, SUCH AS INPUT/0UTPUT. EQUIPMENT ‘AND .AUXILTARY SIQRAGE -
. UTILIZING puﬂcnso CARDS, MAGNET!C TAPES, DISKS OR-DRUMS..
: -..'4'- . 3’(' ‘ 4 - . . -
B N S, - B
& .~ SEE BINARY CODED DECIMAL. -
_ BuYg-- T . - S .
| Cs ~ANY MECHANICALy ELECTRICAL, ELECTRONIC, OR PROGRAMMING .
’ OEFECT'WﬁAT INTEREERES WITH THE OPERATION OF THE COMPUTER OR THE
"'. SUCCESSFUL RUNNING OF A PROGRAM. USED svnonvmou&tv WITH ERRCR AND
-; 3 HALFUNCTIQN.~ . R R :
- .%‘v . o o ¢ A‘\'.k ®

-

\. N

T

- BRANCHING

Eaniaati R T T T L o e e e LTl i 4 B o e & i o RS AT o or (KT me X8 80 n oo A meas e RIS S s bt « o ot - e

COMSC GLOSSARY
PAGE 4

BLLCK _ »
. A COLLECTICN OR GROUP OF WORDS, RECORDS, OR CHARACTERS WHICH
ARE HANDLED AS A SINGLE UNIT, ESPECIALLY WITH REFERENCE TO INPUY

AND OUTPUT. A FILE STORAGE BLOCK IS OFTEN CALLED A PHYSICAL
"RECORD. ALSQO, THE SET OF LOCATIONS OR TAPE POSITIONS IN WHICH A
BLOCK OF WORDS: AS DEFINED ABOVE, IS STORED OR RECORDED.

-

BLOCK DIAGRAM

. A DIAGRAM OF A SYSTEM, INSTRUMENT, COMPUTER OR PROGRAM
“IN WHICH SELECTED PORY IONS ARE REPRESENTEC BY ANNOTATED BOXES
_AND INTERCONNECTING LINES., .

BOOLEAN ALGEBRA ag

THE SCIENCE OF SYMBOLS OENOTING LOGICAL PROPOSITIONS AND
THEIR COMBINAT[ONS ACCORDING TO CERTAIN RULES WHICH CORRESPOND
TC THE LAWS OF LOGIC. NAMED AFTER THE ENGLISH MATHEMAT ICIAN
GEORGE BOOLE €1815~1864),

X

BRANCH {NOUN) .

A SEQUENCE OF INSTRUC TIONS EXECUTED AS A RESULT OF A
DECISION INSTRUCTION. .
, BRANCH (VERB)

TO DEPART FROM THE USUAL SEQUENCE OF EXECUTING !NSTRUCTIONS
IN A COMPUTER: SYNONYMOUS WIYH JuMPp OR TRANSFER .

BINARY .
1. THE NUMBER REPRESENTATION SYSTEM WITH BASE OF TWO.

. 2¢ A CHARACTERISTIC OR PROPERTY INVOLVING A SELECYION,
CHCICE CR CONDITION IN WHICH: THERE ARE ONLY TWQ PO IBILITIES.

BINARY MACHINES

DIGITAL COMPUTERS IN WHICH NUMBERS ARE REPRESENTED IN THE
BINARY (BASE 2) NUMBER SYSTEM. INFORMATION OVHER THAN NUMERIC
IS ALSO REPRESENYED AS COMBINATYIONS OF ®B[TS.*

BINARY CODED DECIMAL
A TYPE OF NOTATION IN WHLCH EACH DECIMAL DIGIT IS IDENTIFIED

BY A GROUP OF BINARY ONES AND ZEROS .

. C‘

‘ THE ACT QF EXECUT ING A CONDITIONAL CHANGE OF ADDRESS.

(N

BASE ADDRESS | “ NG
-~ . A GIVEN ADDRESS FROM wnxcu AN ABSOLUTE ADDRESS 1s oealveﬁ BY
CDMBINATION RITH A RELAT[VE ADDRESS , y :

L .

BT

4
SUBROUT INE,

 HOLES IN PUNCHED TARDS.

B i e pp——

e L P

COMSC GLOSSARY
PAGE 5

BATCH PROCESSING
A SYSTEM APPROACH TO PROCESSING WHERE SIMILAR INPUT Y YEMS
ARE GROUPED FOR PROCESS ING: DURING THE MACHINE RUN.

BOOTSTRAP ’ _

A Tecnntqgg OR DEVICE OES IGNED YO BRING ITSELF INTO A
OE SIRED STYATE 8Y MEANS OF ITS OWN ACTION: E.Ges A MACHINE
ROUTINE WHOSE FIRST FEW INSTRUCTIONS ARE SUFFICIENT TO BRING THE
RESY OF ITSELF INTO THE COMPUTER FROM AN INRUT DEVICE.

o

- Ce e s - P - = - L e e PO — P PR F e e e e m e

- THE MOST BASIC UNIT OF INFORMATICN, REPRESENTING A CHO ICE
BETWEEN YWO ALTERNATIVES, THAY CAN BE STORED OR HANDLED. A
BYNARY DIGIT: A ONE (1) OR IERO(D), OR TVHE ELECTRICAL, MECHANICAL
MAGNETIC, OR CHEMICAL REPRESFNTATION OF EITHER IN -AN AUTOMAT IC
COMPUTER, : : '

7

BUFFER

A_TEMPORARY STORAGE DEVICE USED TO COMPENSATE FOR A L.
DIFFERENCE IN THE SPEED OF DATA FLOW OR THE OCCURRENCE OF EVENTS.
WHEN DAYA' IS BEING MOVED FROM ONE OEVICE TO -ANOTHER. -

BYTE ') s
A CONTIGUOUS SEY OF BINARY DIGITS OPERATED UPONzﬁé A UNIY,

CACM | - | -
COMMUNICATIONS OF' THE ASSOCIATION FOR COMPUTING MACHINERY.

L

CALL - . ‘ ~
THE TRANSFERRING OF CONTROL TO A SPECIFIED CLOSED "

ha

<

CARD HOPPER | : |
. .A DEVICE THAT HOLDS CARDS AND MAKES THEM AVAILABLE ¥O A CARD
FEED MECHAMISM, SYNONYMOUS WIVH INPUT MAGAZ INE. CONTRAST WITH

CARD STACKER.,)<7 -
CARD "IMAGE o

A ONE~TO-ONE REPRESENTATION OF THE CONTENTS OF A PUNCHED -
CARDy E.G.y A CARD IMAGE ON MAGNETIC TAPE, -

V4 i

e

CARD READER o R . |
A DEVICE WHICH SENSES AND TRANSLATES INTO. INTERNAL FORM THE

»

¥

L

COMSC GLOSSARY
: PAGE 6

" CARD STACKER

AN QUYPUT DEVICE THATY ACCUHULA?ES CARDS 1IN A DECK » CQNTRAST_'

HITH CARD HOPPER,

A

CARDS TO TVAPE ' v
PERTAINING TO EQUIPMENT OR METHODS THAT TRANSMIT DATA FROM
PUNCHED CARDS TO MAGNETIC TAPE..

CARRTAGE RETURN
AT THE LEFT MARGIN. { .

\

CATALOG

THE DATA SET CONTAINING THE NAMES AND VOLUME [DENTIEICATION
OF SELECTED DATA SETS, USED BY THE SYSTEM TO LOCAYE DATA SETS
SPECIFIED BY NAME ONLY,

CELL :

A STORAGE CELL OF 1 BINARY OIGIT CAPACITY, EoGsy A SINGLE
BEY REGISYER, . L -
CHANNEL “ R X
t A PATH ALONG WHICH SIGNALS.CAN BE SENT, EoGoy DATA ‘CHANNEL,

QUTPUT CHANNEL .

CHARACTER SET - -~ A\
A LIST GF CHARACTERS ACCEPTABLE FOR CODING YO A .SPECIELC.
COMPUTER OR INPUT/QUTPUT DEVICE.

CHECK BIT o |
A BINARY CHECK DIGIT, OFTEN A PARITY BIT,

CHECK OIGIT

ONE OR MORE DIGITS CARRIED IN A SYMBOL OR A WORD DEPENDENT
UPON THE REMAINING DIGITS IN SUCH A FASHION THAT IF A SINGLE
- ERROR QCQURS EXCLUDING COMPENSATING ERRORS, THE ERROR NILL BE
REPORTED’ "
CLCSED SUBROUT INE ' : : *
“° TN -SUBROUTINE THAT CAN BE STORED AT CNE PLACE AND CAN BE
- CONNECTED TO A ROUTINE BY LINKAGES AT ONE OB MORE LOCAYIONS., =«
CONTRAST WITH OPEN SUBRQUY INE,. '

~.—.-THE. OPERATION THAT- CAUSES - THE -NEXT-CHARACTER-YO- BE «pamreu e

¥

T

-

L cansc GLDSSARY Y,
(\ CPAGE -0 7

COOE SN - '
" 'L A SYSTEM OF SYMBOLS FOR REPRESENTING OATA OR INSTRUCT IONS
"IN A COMPUTER OR A TABULAT ING MACHINE OR, 2 TO HWRITE A PROGRAM OR
PARY OF A PROGRAM FOR THE SPLUTIGN'OF A PROBLEM BY A COMPUTER,

e
COLD START
" NO PROGRAMS STORED ON- SPQ0L PACK.

A

COLLAT ING SEQUENCE
. THE SEQUENCE INYO uulcu THE ALLOHABLE qanancrens OF A
- COMPUTER ARE RANKED DR ORDERED, ,

COLUMN ' ' 4
*1 A VERTICAL ARRANGEMENT OF cunnacrens OR OTHER EXPRESSIONS;
OR 2 LOOSELY, A DIGIT PLACE. R o o

COLUMN BINARY
PERTAINING TO THE BINARY REPRESENTAT!ON OF DATA ON PUNCHED
CAROS IN WHICH ADJACENY POSITIONS -IN A COLUMN CORRESPOND TO .

ADJACENT BITS, OF DATA, E.G.y EACH COLUMN IN A 12-ROW CARD HAY BE

USED TG RE?RESENT 12 ﬁONSEQUT!VE BITS OF h 36~B!T WORO .

& . -

COMMAND = - L .
A CONTROL SIGNALq v .
- COMPILE. - ‘

TN PREPARE A MACHINE L ANGUAGE PROGRAM FROM A QOMPUTER
PROGRAM. WRTTTEN IN ANOTHER PROGRAMMING LANGUAGE. -

'ﬂccntnoL CHARALT ER ‘ ® g

A CHARACTER WHOSE .OCCURRENCE IN A° PARTIGULAR CONT EXT
INITIATES, MODIFIES, ORSTOPS A CONTROL OPERATION, E.Gey A
CHARACTER. TO CONTROL CARRIAGE RETURN,

CONTROL FIELD | - |
A CONSTANT LOCATION HHERE INFORMATIBN FOR CONTROL PURPOSES
‘1S PLACEDM - .

©

P
)
3

*@ONTROL unxr
- JTHE™ PORTION OF A COMPUTER WHICH DKRECTS THE SEQUENCE OF

OPERAT IONSy INTERPREYTS THE .CODED INSTRUCTIONS, AND. INITIATES TRE

PROPER .COMMANDS TO THE COMPUTER CIRCUITS PREPARATORY TO

'EXECUTION* P18

gl -

-

* . e
. . , oo . .
T ‘ ’ ¢ . . f x
[A A B ,
N - o

: COMSC_QLOSSARY o
T PAGE 8 R

‘ El -

" CONVERSAT JONAL “MODE

. A MODE OF COMPUTER QPERATrON HHERE TWO~WAY COMMUNICAT!QN IS
MAINTAINED DETWEEN THE USER AND THE MACHINE, AS OPPOSED YO A TYPE
OF PROCESSING WHERE THE COMPUTER 1S YOLD IN ADVANCE PREC!SELY
WHAT {5 TQ BE DENE. .

CONVERT
" TO CHANGE THE REPRESENTATION OF DATA FROM ONE FORM -TO
ANOTHER, €.G.y TO CHANGE NUMERICAL DATA FROM BINARY TO DECIMAL OR

TRANSFER !NFGRMATLOM FROM CARDS TO YAPE..

&

CENTRAL PROCESS!NG UNTT (Crpuy)
THE UNIY OF A COMPUTING SYSTEM THAY CGNTAINS THE CIRCUITS

-

X

) PROGRAM OF OPERATING INSTRUCTIONS.

THAT CALCULATE AND PERFORM LOGIC DECISICNS BASED ON A MAM*MAOE

£

';_fqﬂaaacren

"_caanL“
) LANGUAGﬁ'THAT RESEMBLES BUSINESS ENGLISH,

_ ONE OF A SET OF ELEMENTARY SYMBOLS ACCEPTABLE TO A DATA)
PROCESSING SYSTEM FOR RFAD!NG&MHR!T!NGy OR STOR!NG. ' R

-8

CHARACTER RECOGNITION - o
" THE TECHNIQUE OF REABING, XDENT!FY!NG AND ENpr!NG A

.PR!NTFD CHARACTER BY OPTICAL MEANS. -

Lo
[

CITATION I NDEX o ' o
AN INDEX USING FUOTNOTE REFERENCES IN DGCUMEN$S AS COUPLING

MECHANISHS AMONG RELATED PAPERS. USED PARTICULARLY IN LAWs EvGari e

SHEPARD®*S CITATIONS. ~
) \a';ll-'
CLEAR - E '

YO PUT A STORAGE Oﬁ MEMORY DEVICE lNTO A STATE DENQT[NG
IERQ OR BLANK. :

L
@
L

CLGSED*SHDP QPERATION

THAT MODE OF OPERAT!NG A COMPUTING CENTER IN.WHICH ALL
MACHINE . OPERATION IS DONE BY MEMBERS OF A SPECIALIZED GROUP .
WHOSE ONLY PRDFESSIONAL CONCERN IS THE CONYROL AND MANIPULATION

OF COMPUTERS., SEE "™OPEN~SHOP PRDGRAMMING.

v
/‘)

COMMON BUSINESS ORIENTED LANGUAGE. A DATA PROCESSING

L

4y

. Toow
b . s f . . M . ..
on F " -
-

coczNG . ‘
THE ACY-OF svechvxnc A PROBLEM*SQLVING pnocsuune BY A

iSEQUENCE OF_ YNSTRUCT!ONS FOR THE OPERATIONS TO BE PERFORMED 8y .

o

CR ~&1) - o

: . v e . ® . -
- - - . L ot e “
- 2 - . L. . . L
o o, . « B . .
. W a0 - .
- e Rl BN A . - L o
<, 4 [g . -
- . - o,

B bt Lt el | SE e e S

‘x.b“".)

-

.
.\\ . . Ty
. . ~ - b i
R 3 ’ . 0 ° - b -
[' . S :
ee - A
LY
.

------ A T . o

Py e R eane e L I e e et A B S e i

CQHSC\GLGSSARV
" PAGE 9

TME COMPUTER. SUCH INSTRUCTIONS MAY BE IN MACHINE LANGUAGE
OR MAV BE COMPILED INTO MACHINE LANGUAGE. SEE "PROGRAMMING.™

"

" - ‘ T .\\

COLLATOR
A DEVICE TO COLLATE OR MERGE SETS’ OF CARDS INTO A NEN -

SEQUENCE.

COMMAND L ANGUAGE)

A LANGUAGE 8Y MEANS OF WHICH CONTROL IS EXERCISED OVER A
- COMPLEX SYSTEM QF . EQUIPMENT-AND~PROGRAMS..NSEE "EXECUT!VE
SYSTEMS & -

COMPILER ' ‘

A PROGRAM ENABLING THE COMPUTER FOR WHICH IV IS
"DESIGNED TO ACCEPT PROGRAMS -IN PROCEDURE~OR IENTED OR PROBLEM~
ORTENTEDO LANGUAGE ANO YO TRANSFORM THEM INTQ MACHINE-~LANGUAGE
PRPGRQMS. ‘ T

-

[

COMPILING . e
- THE PROCESS OF TRANSFORH!NG A PROGRAM IN A SQURCE
LANGUAGE INTO A PROGRAM IN-MACHINE LANGUAGE.

LT T | e T - -4
na . . .
" COMPUTER . S ‘ :
ANY MACHINE CAPABLE oF- ACCEPTING INFGRMATIDN- ‘PERFORMING
. NUMERICAL AND LOGICAL MANT-PULATEONS AND D!SPEAY ING THE RESULTS s

" ANTAUTOMAY IC COMPUTER IS ONE WHICH "PERFORMS. SEQUENCES 'OF OPERA-" .
TIONS -ON THE BASIS OF _INITYALLY STORED INSTRUCTIONS. THROUGHOUT
_ TH1S REPORY, ﬂtonpurekﬂ TS ALWAYS "USED IN THE SPECTAL SENSE OF
“DIGITAL conpuren v SEE "DIGITAL COMPUTER.™ :

L]
.~

L3

- CDNSDLE '
THE UNIY OF EQUIPMENT USED” FOR CDMMUNICAT!ON BETWEEN THE
opeagraa oR senv:cs ENGINEER AND THE COMPUTER.

‘CONTENT~ADORESSABLE MEMORY: -

A COMPUTER MEMORY IN WHICH INFORMATYON IS LOCATED Y THE
CONTENT OF SOME PART OF THE MEMORY. FOR EXAMPLE, SUCH A
MEMORY MIGHT CONTAIN A TABLE OF THE NAMES OF QUANTITIES TOGETHER
WITH: ADDRESSES, SPECIFVING WHERE THE VALUES OF THESE QUANTITIES

. ARE TO BE FOUND. - SEE "Assoé:ATlve MEMORY." | ,
% o - . .

CORESTORAGE. | Te Ao - o
. A FORM OF MAGNET:C'STO%%GE YHAT PERMITS HIGH~SPEED ACCESS
10 INFORMATION WLTHEN THE COMRUTER. SEE MAGNETIC CORE.

-

bl

,;ﬁ-* S : :
. ._2%%1" _— :ﬂ@.‘ o0

Syaensass . Gl Pl R L [N S S, - e b e e i S s

COMSC. GLOSSARY
PAGE 10

.
-

~ COUPLING ® - ' -
. AN INTERACYION BETWEEN SYSTEMS ‘OR BETWEEN PROPERTYES OF A
SYSTEM.

-
‘

CRITICAL PATH METHOOD

A MANAGEMENT-CONTROL TOOL FOR EVALUAT!NG A SEQUENCED PLAN
FOR ACHIEVANE AN OBJECTIVE. EMPHASIS IS PLACED ON THE "CRIVICAL
PATH® WHICH IS THAT SEQUENCE WHICH ACYS AS A BOTTLENECK AND
DELIMITS THE OPPORTUNITY TO ACHIEVE THE OBJECTIVE. SEE ®PERT,.w

e e e e e e e

CRYOGENIC DEVICE “
ANY DEVICE CAPABLE OF HIGH~SP EED swlrcwxmc,ev VIRTUE OF
SUPERCONDUCTIVITY AND VERY LOW THF RMAL NOISE AT TEMPERATURES ‘NEAR

ABSCLUTE ZERO.

CRYOTRON

AN ELECTRIC~SWITCHING AND BINARY MEMDRY*STDRAGE oevxce
UTILIZING THE FACT THAT A MAGNEYIC FIELD CAN CAUSE A SOPERCON-
DUCTING) ELEMENY YO BE 1IN EITHER A SVATE GF LOW OR H!GH

RESISTANCE. =) e
I l . . ’ l ‘ .3
CYBERNETICS s

THE THEORY OFf CONYROL AND COMMUNICATION IN THE MACHINE
. AND THE ANIMAL,

. OASCT , ; L o
_DIRECT ACCESS DEVICE INATIATION, BRGE :

» -

0ATA CELL
THE STORAGE FOR ONE UNIT OF !NFORMAT!ONp USUALLY ONE
CHARACTER OR ONE WORD.

e
‘l . .

W

DATA DEFINIYION . =

A JOB CONTROL STATEMENT THAT GESCRIB § A DATA ssr ASSOCIATED

WITH A PARTICULAR JOB STEP. . . ¥
/7

. .
“ . . o
- L0 - .'__,-

-’ .
- s

DCB . . Lot v’) .‘ , ﬁo "-'. - % . l
DAYA CONTROL BLOCK,. A SVSTEM CUNTRUL BLOCK TH&QUGH ﬂHiGH THE .
INFORMATION REQUIRFO B ACCESS RHUTINES 70 STORE¢%ND RETRJXf OATA

©

[S COMMUNTCATED VO THE --%fégﬂ”u,
. . > d y ’"nz;?‘
. wy, t, ’ 3 'g"’) X ‘.-' ‘ .,’ ' ‘.\"'\ G, , ’:‘ et
i oo DEBE e | g’ G T
‘ LDATA EXTENDED BINARY QG@ED DE;?MAL INTERCH yﬁg COQE- o
s ’b{ r IR -;;o-’..’,w:?—‘.' 0o . L ;“7:
» dﬂ ”(’«,f / L _ ¥ :,:) i;.‘.i-.../;;'_:-,;.';_.?:__ _-_.-__,.-_.,;_.; : —__‘ ,.-_'_;"L:-_‘:_. . L

B T
W et

-ANO PRGDUC!NG THE COMPUTED RESULTS.‘

COMSC GLOSSARY

PAGE 11
DECK
A COLLECTION OF PUNCHED CARDS.
DECOLLATOR)
A DEVICE USED FOR THE AUTOMATIC REMOVAL OF CARBON PAPER FROM
PRINTED FORMS, I
DEL IMITER)

A FLAG THAT SEPARATES AND ORGANIZES ITEMS OF DATA.

{

\
DIGLY]
A CHARACTER USED TO REPRESENT ONE OF THE NON~NEGATI VE
INTEGERS SMALLER THAN THE RADIX, EoGep IN DECIMAL NOTATION, ONE
OF THE CHARACYFRS 0 TO 9. ’ ’

[

DISPLAY" ‘ .
A VISUAL PRESENTATION OF DATA.

8

DUMMY ' .)
PERTAINING TO THE CHARACTERISTIC OF HAVING THE APPEARANCE OF
A SPECIFIED THING BUT NOT HAVING THE CAPACITY TO FUNCTION. AS

A

" SUCH.

“‘-

'DATA PROCESS ING SYSTEM

. A NETHWORK OF MACHINE COMPONENTS CAPABLE OF ACCEPTING
KNFQRMATION; PROCESSING IT ACCORDING Y0 MAN*MADF INSTRUCTIONS, .

%

DEBUGGiN | vy

OR FROM A chPuWE@ PROGRAM: A PROCEDURE YO ESTABLISH

 PROGRAM ACCURACY BY RUNNING THE PROGRAM WITH SELECTIVE DATA YO
- FIND.LOGICAL OR GLERTCAL whucs" OR ERRORS.

.u:fosaueelns SYSTEMS °

g&t:htn HﬁRpHARE an SQFTHARE D!F#!CULTIES.

\

O f' ¢ - : = ‘ . ’ L

¥ ’ '
[3 . - »
. !
.

PROGRAMS OR OVHER SYSTEMS WHICH. NSS!ST THE PROGRAMMER IN

”ﬁéTECT!NG AND CDRRECT!NG ERRORS. SEE "DEBUGG!NG»"

&
-

”guxAGQQSTL& PROGRANS ©. | //

«mﬁOHPQYER PQGQRAMS USED AN THE DETECT!ON ANO ISOLATTON OF

©

%

-SYNONYMOUS WITH SEPARATOR. - - i

COMSC GLOSSARY
PAGE 12

¥

DIGITAL
. THE QUALITY OF USING NUMBERS EXPhESSED IN DIGITS AND 1IN A
SCALE OF NOTATIDN,

-

DEGITAL COMPUTER %, -
A COMPUTER THAT PERFORMS MATHEMATICAL AND LOGICAL OPERATYIONS

WITH INFORMATION, NBWERICAL OR OTHERWISE, REPRESENTED IN DFGITAL

FORMO - *

. o
\] 2 N
'
- . . k

_DIGITAL. DMA e __ e

INFDRMATION EXPRESSED IN DISCRETE SYMBCLS.

d

oo .
OIGITIZER ' | ’
A DEVICE TO CONVERT INFORMATION FROM ANALOGUE FORM T .
& * DIGITAL FORM,) -

DIDDE
AN ELECTRONIC DEVECE USED TO PERMIT CURRENT FLOW IN ONE .
_ D[RECT!ON AND YO INHIBIT CURRENT FLOW IN THE OPPOSITE DIRECTION.

L

_ DIRECT ACCESS L -
SEE RANDOM ACCESS.

DISK STORAGE " . . @
A MEYHOD OF STORING INFORMATION IN CODE, MAGNEY ICALLY, IN
' QUICKLY ACCESSIBLE SEGMENTS ON FLAT ROTATING DISKS.

DOWNTIME - , LTt C% :
THE ELAPSED TIME WHEN A COMPUTER IS NOT OPERATING CORRECTLY
BECAUSE OF MACHINE OR MPROGRAM MALFUNCY ION, .

“

*a

onun 'STORAGE
: - & METHOD® OF STORING INEORMATION - IN CODE, MAGNETMCALLYs ON
THE' SURFACE OF .A ROTATING CYLINDER. -

S A CYLIN

" Es
N oy b

¥ DUNP
- TO COPY THE CONTENTS OF. ALL OR PARY OE A STDRAGE; USUALLY
FROM A CENTRAL PROCESSING UNIT INTO AN FXIERNAL STORAGE .'- -

2
~.

- ~ LY . A

EACDIC - s
EXTENDED BCO INTE CHANGF CODE ¢ THE PRIMARY CHARACTER SET

USED BY THE 360.
I

At

4

*

> <
EXTRAPOLATION .
AN ESTIMATE OR INFERENCE OF A VALUE BEVOND THE KNOWN RANGE :
FROM WHICH THE ESTIMATED VALUE IS ASSUMED, TO FOLLOW. -
CFIELD

e Bt T = e - = 7 L PR B -

- P o e e £ B e gy
D i .

. COMSC GLOSSARY
PAGE 13

A

EDLY . |
TO MODIFY THE FORM OR FORMAT OF DATAs EoG.s TO INSERT OR
DELETE CHARACTERS SUCH AS PAGE NUMBERS OR DECYMAL POINTS,

ENTRY POINT - . | u *
IN A ROUTINE, ANY PLACE TO WHICH CONTROL CAN BE PASSED.

.

ELECTRONIC RECORDING AND MACHINE ACCOUNTYING
A SYSTEM DEVELOPED AT STANFORD RESEARCH INSTITUYE WHICH

PERFORM ALL ROUTINE BOOKKEEPING FUNCTIONS FOR CHECKING ACCOUNTS.

EXECUTE v ‘ |

TO PERFORM A DATA PROCESSING ROUTINE OR PROGRAM, BASED
ON MACHINE-LANGUAGE INSTRUCTIONS, '

EXECUTIVE SYSTEMS- ~) | oo
SYSTEMS OF COMPUTER-PROGRAMS DESIGNED TO PROCESS AND TO
CONYROL THE EXECUTION OF QTHER PROGRAMS.

v

EN A RECORD, "A SPECIFIED AREA USED FOR A PARTICULAR CATEGORY
OF DATA, E.G.s A_.GROUP OF CARD COLUMNS OR A SET OF BIT LOCATIONS
IN A COMPUTER WORD. \

LY

FIXED POINT ‘

PERTAINING TO A NUMERATION SYSTEM [N WHICH THE POSITION OF
_THE POINT 1S FIXED WITH RESPECT TO ONE ENO "OF THE NUMERALS.,
ACCORD ING YO SOME CONVENT!ONu
FLAG

1 ANY OFf VARIOUS TYPES OF - IND!CATORS USED FOR

. TDENYIFICATION, OR 2 A CHARACTER. THAT SIGNALS THE OCCURRENCE OF

*

Al
N Y
o N . L ’ . . -
. . . 32 . .
.) 28 wm—— e] v
" B - . - . . . s . 5 " 'f.‘ . o . -
. ,) , . " . . e, 7 ; ' . .
. - i N
J : i : . - . R . e .
Ex : ' :
R

SOME CONDITION. .

)

FORMAT
FORM, USUALLY REFERRING 10 THE ARRANGEMENF OF \INPUT OR
"QUTPUT DATA OR LlNES OF PR!NT' 'SEE FORMAT “STATEMENTS 1IN LANGUAGE
MANUAL 5. .

«

- ESTABL I SHED - THE -FEASIBILIYY -OF -MAGNET JC—INK -CHARACT ER -RECOGNITION - —
-AND THE USE OF COMPUTERS IN BANKING INSTITUYIONS WHERE THEY .

/

AND ACYIONS IN A COMPL!CATED ACTIVITY.

"FCJNAL LANGUAGE

F

o T T T e == ——— - T P e R A e e L L b R ST ATERSSAIS i S e e A et . n A BT b 4 e e e e

COMSC GLOSSARY ~ . N
PAGE 14 - :

-

FERRITES ‘ - -
A CLASS OF NGNQMETALL!C SUBSTANCES CONTAINING TRON, OXYGEN, i

_ AND 'OTHER METALS. THESE MATERIALS HAVE FgRROMAGNETIC PROPERTIES
AND ARE POOR CONDUCTORS OF ELECTRICITYY, H

IS~ MAKES THEM USEFUL
EN MANY APPLICAY IONS WHERE ORDINARY FERROMAGNE VIC* MATERTIALS
(HHICH ARE GOOD ELECTRICAL CONOUCTDRS! WO O CAUSE TOQ MUCH LOSS".
OF ELECTYRICAL ENERGY. _ '

. i) 7

FILE)
A COLLECTION OF RELATED RECORDS; E<G.s IN INVENTORY
CONTROL, ONE LINE OF AN INVOICE FORMS AN [TEM, A COMPLETE
INVOICE FORMS A RECORD, AND THE COMPLETE SET OF SUCH RECORDS
FORMS A FILE. ‘ ; . J
N

FILE MAINTENANCE N\ . _

THE PROCESSING oF INFQRHAT!ON IN A FILE TO KEEP IY UP TO
DA T E [\\ - A

\
A

FLIP-FLOP - 4 | '\
A CIREUIT OR DEVICE CONTAINING ACTIVE ELEMENTS CAPABLE' OF .

ASSUMING EITHER ONE OF TWO STABLE;ﬁTATES AY A GIVEN TIME.

)

FLCATING=POINY AR ITHMET IC .
A TECHNIQUE PERMITTING ARITHMETIC OPERATION QN NUMBERS jN

WHICH THE LOCATIONS OF THE DEC!MAL POINTS ARE NOT UNlFORM;

FLOW CHARY &
A DIAGRAMMATIC REPRESENTATION 0OF THE SEQUENCE OF CHU!CES

*

FORMAL : - ‘ .
MECHANICAL, METHODICAL, OR DETERMINISTIC IN CHARACYER.

| A SYSTEM CONSISTING OF A NELL*DEFINED. USY ALLY FlNITE. SET
/CHARACTERS AND RULES FOR COMBINING CHARACYE ~WIYH ONE ANQTHER -

T /FORM “WORDS OR. OTHERLEXPRESS[ONS BUY WITHOUT ASSTGNMENT OF -
FMANENT MEAN!NG T0O SUCH WORDS OR EXPRESS[ONS.

RJ%AN . ")

FORMUL A TRANSLATING SYSTEM. A DATA PROCESS ING LANGUAGE
AT CLOSELY RESEMBLES ALGEBRAIC NOTAYION. - : S g

s 0 ¥ . . .

~

L

TE—

G NERATE .
TO PRODUCE A PROGRAM BY SELECTION OF SUBSFTS ﬁRGM A SET OF

KELETAL CODING UNDER THE CGNTRDL oFr PARAMETERS.

Tl 2%. e

e R

P

o

.~
LS

ot
o\-, . h

L HEURISTIC e

" IDENTIF IER

B i o B T P it Tt S P S

COMSE GLOSSARY
PAGE 15

'E =
GENERAL*PURPOSE

- BEING APPLICABLE TO A HIDE VAR!ETY OF USES WITHOUT
ESSENTIAL MOOIFICATION. CONTRASTED WITH "SPECIAL~PURPOSE.®

" HASP e
| HOUSTON AUXILARV SPOOLING PRIQR!TY. A -J08 SCHEDUL!NG
PROGRAN. ‘ - .

)

HOLLER!TH CODE
AN AL PHA-NUMER IC PUNCHED-CARD CODE INVENTED BY_DR._HERMAN
HO!LER!IH TN 1889, IN WHICH THE TOP THREE-POSITIONS IN A COLUMN

ARE CALLED IONE PUNCHES 12+ 11y AND O FRQM THE TOP DOWNWARD, AND- -

"ARE COMBINED WITH THE REMAINING DIGIT PUNCHES 1.THROUGH 9 TO
REPRESENT ALPHABET!C: NUMPRYIC, AND SPECIAL CHARACTFRS.

b Fo ! 1

HAREL cCopy - - i ' : -
. A PRINTED COPY OF MACHINE OUTPUT, EsGos PRINTED - REPGRTS:
LlSTlNGs, OUCUHENTS, ETC. -)
b2
'HARDNARE N

P‘THE'MECHANICAL; MAGNETIE, ELECTRICAL; AND ELECTRON!C DEVICES
FROM HHJCH A CGHPUTER IS CONSTRUCTED, ~

-

F

A TECHNIQUE BY MEANS OF WHICH AN JINDIVIDUAL (OR MACHINE)
- €CAN BE ORGANIZED VO SOLVE PROBLEMS. WHEN APPLICABLE, IT MAY
PROVIDE A SHORTCUT TO THE GOAL BUT CANNOY GUARANTEE A SOLUTION
‘OR AN OPTIMAL somurloﬁ. SEE "ALGDR!THM. |

1

Hausexegptnc - T :

OPERATIONS IN A ROUTINE WHICH DO NCT CONTRIBUTE DIRECTLY
TO THE SOLUTION OF.A PROBLEM BUY DO CONTRIBUTE DIQECTLY FO THE
EXECUTION OF A PROGRAM BY THE coypurea. ')

. A SYMBOL WHOSE PURPOSE 15 T0 TDENTIFY,. IND!CATE, OR NAME A
, BODY OF, DATA, . .

b * - N

’

9
INDEX
AN ORDERED REFERENCE LIST OF THE CONTENTS OF A FILE aR
 UOCUMENT, TOGETHER WITH'KEYS OR REFERENCE NOTATIONS FOR .
QIDENTIFICATION OR LOCATION OF YHOSE CONTENTS, OR 2 A SYMBOL OR A
'NUMBER USED TO IDENTIFY A PARTICULAR QUANTITY LN AN ARRAY OF
SIMILAR QUANTITJES. ,

- Yo

Q8 _~ o w o ;
o e/

(4]

CONSC GLOSSARY -
PAGE 16

\

INDEXED SEQUENT IAL | : | e
A DATA SET WHOSE RECORDS ARE ORGANIZED ON THE aAéxs OF A
COLLATENG SFQUENCE DETERMINED BY KEYS THAT PRECEDE EACH BLOCK OF

- OATA, _ _ :

INITEALIZE - ‘ e e
'TO SEY COUNTERS, -$ HES, AND ADDRESSES TO ZERO OR OFfHER .~
STARVING VALUES AT THE BEGINNING OF, OR AT PRESCRIBFD.-POINTS INS
A CCHPUTER ROUT INE. ‘ . ; e e S, .
T . 1S
i e ’ __,_ . . 3 . _ af;‘\ A ; . .J:Et~.‘ . T P
, !NTERFALE ¢ : SR S SULETEWY
3 W-5HARED BOUNDARY. | L ' T \v
INTERPRETER S ST Dl " g
. A DEVICE THAT ﬂnxnrs oN ¥ pUNGHE& cARa e n«wa Agnsgou e
PUNCHED IN THE CARD, y ;- .o, AR . A yo
: o . v« AR BT s * S -
!NTERRUPT ROUY INE e T T ST
" A SECONDARY PROGRAM Tmax #Axessabaigw-F@LLnuch A TRA&SFER W
- . EROM ¥Q% MA TN PRQGRAM. S . AP S R
.“’.“‘.‘“) . . | . . h}$:'; :“: R ot . . _e‘ . v "é- S . ' ‘ . . ') - .] . ;.."_”. o
iTEMr\ . \ e.) e it RN "’Q- - v
o A COLLEcvxh& oF RELATES qyagncreas. TRE&IED As A’UNLy. U I U
" \ggfrﬂas;~a{1ﬁ\5;LE\ N .ug?sq A PR A R b
~ : Co e ROV .e o . o
L - - K \.\\.:.‘-. 9‘.A:‘1 @ 9‘?“‘ EIE ages ','4_-‘;\ ' ;.;‘ . KR A*t
I0LE TimME - . N e = S S r L. L et
. THE TIME THAT A comp TER :5 AVALLABLE an usk. aur Is NOT,-%, B
IN DPER&T!ON. S SR A S ,j' Ly e
. ?7 | -; - :‘:& -._ . *(e * . : _-_.f_-..“-‘j - o h - ? I ¥ .
anex REGISTER = N " S
TR REGISTER CONTAININ Qu. !Tv~wrugu MAY, BE S £0° ’ :
FOR MODIEYING THE ADDRESS PART OFMN Jsthuqrrom, Fﬂ «cquN?rNs., ’
OR - FCR OTHER puapas&& AS OLRFQTEp BY THE PROGRAM, " - ST
)) . _- ke z,, Sy L _ : * A .)
N . ' - \“ . ‘\ ¢ ‘, . R 5&' nua:'}_'.-'a Soeo év -t .
INFORMATYON PROCE SSING ‘ Ues e T
THE STORAGE, .R ETR IEVAL' AaﬁansEﬁENT. Sﬁﬁﬁﬁildm OB Sa e i
TRANSFORMATION OF INFORMAT LON, GENERALLY AP lao*nn”na&avxnn " 3 :
0UT SuCH QEERATIQNS wtrn AHE anp*éF A xﬁeemm nlrerL coupuYeg._.aﬁ._m -
. LT .) ,. . \,M* ’ﬂ:"‘ . . \“m.“'.” ne
, RET l“vn B Ut |
INFORMATIGN RETRIEVAL © - PRI T gal
THE LOCATION AND SELEéerN. onfﬁtnlun¢ o necunﬁﬁtavlon ' ay\‘ggﬁ}
* OR GRAPHIC RECORDS RELEVANT TO A GIVEN' INFORMATION aﬁqUtwe&snt g
FROM A FILE OF SUCH MATERI%&.' ~L;-ﬁ‘¢~ .“a1¢ | xs} v
. ‘. " ' : 'ﬂ ‘!"? ', “" . v ot * IR I, ’0‘2} Ty T'\}q; evi . . Y o, :?::3
. ;" [y '-;JQ. v“: . | o ' - o ,“, . . .
, . ‘) R AT w:_n_;: T i ‘g Y 3 F“' .
. - ’§,,v [I S e, ‘, M ”"l ' & ':’ ‘°
b ' SN) O R “F‘lfn\ J U MATTE TR
% RN LN oo e)

.
4

) .

a

»

R COMSC GLOSSARY
T+« . . PAGE 1T.

-
1

!NFQRHAT!DN SYORAGE AND RETRIEVAL

THE ARRANGEMENT OF DOCUMENTATION OR RECORDS IN A s

SYSTEMATIC WAY TOGETHER WITH THEIR SUBSEQUENT LOCATION AND
SELECTION ON DEMAND. SEE -“INCORMATTON RETRIEVAL,."

INPUT-QUTPUT

INPUTS [NFORMATION READ INTO THE COMPUTER FROM THE "OUTSIDE
WORLD. " QUTPUT: INFORMATION TRANS FERRED FROM THE COMPUTER TO o
THE ®QUYSIODE WORLD, " AN ADJECTIVE, TINPUTY PERTAILNS TQ THE Q
DEVICES WHICH BRING INFORMATION INYO THE COMPUTER, AND TOQUTPUT ™.
ANALOGOU?LY. -

L]

INQU IRY ‘) ' ‘ y
A REQUEST FOR INFORMATION FROM STORAGE, E.G., A REQUEST
FOR .THE NUMBER OF AVAILABLE AIRLINE SEATS. |
| \ B

INSTRUCTION ; S -
. TATEMENT THAT CALLS FOR A SPECIFIC COMPUTER OPERAT!GNa

4

@

+

£ -
INTERLEAVE P 1 v

TQ INSERT SEGMENTS OF ONE PROGRAM 'INTO ANOTHER PROGRAM SO
THAT DURFQG PROCESS ING DELAYS IN ONE PROGRAM, ,PROCESSING CAN
CONTINUE ON SEGMENTS OF ANOTHER PRDGRAH; A TECHN!QUE USED IN ¢

MULTIPROGRAMH!NG¢ , ’ "\

D . . y
N . L .
’ . Nd .! ' .-

INTERRUPTY) oo
A BREAK' IN THE NORMAL ELOW OF PROCESSING. THE NORMAL - JOB
FLOW.-CAN BE RESUMED FROM THAT POINT AT A LATER TIME. AN °

INTERRUPT IS USUALLY CAUSED BY A S!GNAL FROM AN FXTERNAL %QURCE[_

EoGoyr A TERMINAL UN'IT . _ ,
x . R . - .

ITERATE .

- (MO REPEAT, AUTQMATICALLY, UNDER PROGRAM CONTROL, THE SAME
SERIES’ OF " PROCESSING STEPS UNTIL A PREDETERW STOP DR .
BRANCH CONDITION I'S REACHED:' TO. LOOP. = . f

~ \ $ N N .) . . ‘
JACHM o ‘ '

. JOURNAL "OF THE ASSOCIATION FOR COMPUTING MACHINERY.,

N R .) > r

1]

JOs ' :
A UNIT OF COMPUTER DATA*PRBCESSING WORK. USUALLY DEF[NED AS

T THE PROCESSING OF A SINGINE USER S PROGRAM.
A . . g

JOB CONYROL LANGUAGE ~ ‘
STATEMENTS OF A SPECIFIC FdRMAT WHICH AFFECT pnocesstc

USU%LLX !N THE FORM’ OF PROGRAM CONTROL CARDS. ' .

?

" DE SLENED FOR USE WITH THE IBM SYSTEMIBGO. y

REFERENCE. SEE PROGRAM- LIBRARY,

s —e i AFTer b AU A et BT S A " BTy SRR ATTI SITAT e g LI SR NPL BN TS PSS Ateve i :
A andd - Y TR AT AT e A - R i L ST N VY B e gy e e E T ey e e

& " -
.

- COMSC* GLOSSARY, -

PAGE 18 -
) ’ '
Re
KEYPUNGH) et . -
7 A KEYBOARD-ACTUAYED DEV!CE.'HAr PUNCHES- HOLES IN A CARD TO-
REPRESENT DATA, . R

o :

KTLOMEGAC YCLE 2 By N .
A BILUION .CYCLES FER SE iD. A REPETITION RATE IN WHICH
AN EVENT IS REPEATED/)

K INET ICS

THE SCI§) E RATE. dﬁ CHEMICAL REAcrlnNs; THE BRAQCH

. R

ARGE CORE STORAGE. A LOW COSY AUXILIARY BULK STORAGE UNIT

N B-

I BRARY g | . |
A COLLECTION OF ORGANLZED INFORMATION USED FOR STUDY AND

L INKAGE \
/. THE MEANS BY WHICH COMMUNICATION IS EFFECTED BE TWEEN ‘TWO
ROUTINES OR CONTROL SECTIONS. :

LANGUAGE ‘] o

. - A MEANS OF COMMUNICATION 8Y MEANS OF EXPRESSIONS.
SPECIFICALLY, ANY MEANS OF COMMUNICATING INSTRUCTIONS AND DATA
.TO AND FROM A COMPUTER USING SYMBOLS OR PATTERNS PERCEPTIBLE Y0
8OTH THE HUMAN AND THE MACHINE.

L}BRARY ROUT INE -
A SPECIAL-PYRPOSE PROGRAM WHICH MAY 8E MAINTAINED IN

STORAGE FOR USE WHEN NEEDED. .

3
k\) N . , ~ i
LIST PROCESSING S ' \

THE PROCESSING OF INFORMATION ORGANIZED IN LISTS {ToEu
ORGANYZATIONS IN WHICH EACH ELEMENT IDENT!FKES ONE- OR MORE =
SUCCEEDING ELEMENTS)g 5 '

" . .. i . 29” S ';"".(\ »

S

' % SN . COMSC GLOSSARY .
.] PAGE 19 .

oy -

LIST STRUCTURES 3° ~ ' ‘
AN ELEMENT OF A LIST MAYs ITSELE BE THE NAME OF A LIST.
THE MORE CPMPLEX ORGANYZATIONS THAT CAN BE CONSTRUCTED BY
LHAVING THE® NAMES OF "U18S
“CALLED LIST STRUCTURES, SEE “LIST PROCESSING .

(' | '_

L.OAD
A T0-PLACE DATA “INTO MAIN CORE STORAGE.
‘ { :
Looe - '

——— .SEE !TERA*EG R ._, S e s e

MACHINE INSTRUCTION '
AN INSTRUCY ION THAT A“MACH!NE CAN RECOGNIZE AND EXECUTE.

L}
<

MATRAN

MArnxx‘rRANSLATIQNe APTYPE OF MATHEMATICAL PROGRAMMING
LANGUAGE. . - o) -
: R L. .
MATRIX ‘ >

A RECTANGUL AR ARRAY OF NUMBERS SUBJECT TO MATHEMATICAL
OPERAYIONS, SUCH AS ADDITION, MULTIPLICAYION, AND INVERSION,
ACCDRDING TO, SPECIFIED RULES, RY EKTENSYON: AN ARRAY OF ANY
NUMBER OF" DIMENSIONS.

® . &
MEMBER '
, AN ENTITY WITHIN A DIRECTORFED DAFA SET, !NDEXED !N THE BATA
SET S DIRECTORY AND HAVING DATA CONTENT. @3
. 4
n ,
ME T

MULT!PRDGRAMMING HITH FIXED NUMBER OF T%FKS.

MODULE ' + (/P

1 A SEGMENT OF CORE STORAGE, OR 2 A PlECEsOF PFRIPHERAL .
EQU IPMENT H!TH A SPECIFIC SYORAGE CAPAQ!TY' E. G.xlA DISK MOODULE.

/1 . ' .. \

MULTIPLEX '

TO INTERLEAVE OR SIMULTANEQUSLY IRAN}M!T TWO QR MORE
MESSAGES ON A SINGLE CHANNFl. |

\

"y
t '
l

v

3

) * 4 A
MVYY) ' N : S o \
- MULTEIPROGRAMMING WITH VARIABLE NUMBER OF TASKS,
® '.Q ’_.] ."é‘ .
‘ oL . S ' .
. ra 291 v

-~

h)

 MAGNETIC~INK CHARACTER RECOGNIT ION

t R
r

. ' ‘ gousc GLOSSARY

. : PAGE 20. - T
AN *) -~ .
MACH I NE— QNDEPEND&NT o :
HAVING A FORM WHICH DQES NOT DEPEND ON THE PECUL[AR[T;EEJ
OF ANY COMPUTER OR CLASS OF COMPUTERS.

} s -
.
.

MACHINE L ANGUAGE Cot ~ /

A VOCABULARY OF ®"WORDS™ HEANINGFUL YO A COMPUYER; A STRING,
OF DIGITYS ACCEPTABLE TO AND MANIPULATABLE BY MACHINE CIRCUITS:
TRAINS OF ELECTRICAL PULSES SEVTING AND RESETTING .COMPUTER
CIRCULITS OR MEMORY, T

!

A

MACHINE~READARLE FEORM)

» A FORM IN WHICH INFORMATION IS ACCEPTABLE YO A MACHINE.

FOR EXAMPLE, PUNCHED TARDS OR MAGNETIC VAPE CAN CONTAIN INFORMA-
TICN TN MACHINE-REACABLE FORM, WHEREAS HANDWRITING USUALLY DOES
NOT. _ -V

 MACRO INSTRUCTION ' :

. A SINGLE tws%aucerN THAT CAUSES THE COMPUTER 1O Execuve A
PREDETERMINED SEQUENCE' OF MACHINE INSTRUCTIONS. .
MAGNETIC o "

OF v PRODUC ING 4 CkySED BY, OR OPERATED BY MAGNETISM.-

4

NAGNET!C CORE '
A DOUGHNUT- SHAPED PIECE OF FERRITE WHICH CAN BE MAGNET T ZED

[N EITHER A POSITIVE (CLOCKWISE) OR' NEGATIVE (COUNTER-CLOCKWISE)
SENSE AND SO CAN RECORD A "B8ET.™ RECTANGULAR ARRAYS OF MAGREY IC

CORES SITUATED ON THE INYERSECTIONS OF HORIZONTAL AND VERTICAL
SETS OF WIRES FORM A “CORE PLANE." THE MAGNETIC STATE OF AN

- INOIVWIOUAL CORE CAN BE CONTROLLED AND TESTED BY SELECTING THE

HGQIZDNTAL WIRE AND THE VERTICAL HWIRE THATY INTERSFCT AT THATY
CURE. \\

B]

- MAGNET IC DISKS '

THEN, FLAT, CIRGULAR: OBJECTS COATED WITH MAGNET IZABLE
MATERTAL SO THAY D!GITAL RECORDINGS CAN BE MADE THEREON.

"CHARACTERISTICALLY SUCH DISKS PROVIDE HIGH DENSITY OF RECORDING.

PER UNIT VOLUME WITH RFLAT!VELY SHORY ACCESS TIMES TO THE

" INFORMATION RECORDED. - . . . \ \\

k ‘ . &j \

THE PROCESS OF MECHANICALLY RECOGNIZING CHARACTERS WHICH
ARE RECORDED IN MAGNET IZABLE INK. PRINTED CHARACTERS, WHEN
MAGNETIZE0, CAN.BE RECOGNIZED 8Y THE UNIQUE PATTERNS OF MAGNEY IC

ANDUCT 1ON CREATED AS THE PRINTED PAYTERNS PASS A MAGNET!C -READ~

ING HEAD., | ‘ o
‘s . \-7 $. . ' * s e

e L -? RS T iy o v et P SR, [A At R S e e e L b g_ LR P S—yY e S s it e

-

{

COMSC GLOSSARY Ve
PAGE 21 , ‘

~

ﬁﬁGNETIC“REAG!NG HEAD i

AN FELECTROMAGNETY USED FOR CONVERTING ELECTRICAL SIGNALS INTO
A MAGNEY IC . RECORDING, CONVERTING A MAGNETIC RECORDING INTYO '
ELECTRICAL SIGNALS, .OR 'ERASING A “MAGNET IC RECORDING: FOR. !NSFANCE
ON A MAGNETIC DISK.

MAGNETIC RE SONANCE .
THE PHENOMENON IN WHICH A MOVEMENT (OF A PARTICLE OR SYSTEM .
OF PARTICLES .IS COUPLED RESONANTLY TO AN EXTERNAL MAGNETVIC FIELD.

{
]

JMAGNETIC TAPE | | . |
« A PLASTIC TAPE WITH, A MAGNETIC SURFACE ON WHICH DATA CAN BE
SYORED IN A CODE OF MAGNETIZED SPOTS.

4

1]

13 L]

MAGNETIC THIN-FILM

o A-LOGIC OR STORAGE ELEMENY COATED MWITH AN. EXTREMELY THIN
LAYER OF MAGNEYIC MATERIAL, USUALLY LESS THAN ONE MICRON THICK
{ABOUT FOUR HUNDRED#&HOUSANQTHS OF " AN TINCH!.

(” “é(
MARK~ SENSE

TO 'MARK A POSITION ON A CARD QR PAPER FORM WITH A PENCIL.
THE MARKS ARE THEN INTERPRETED ELECTRICALLY FOR MACHINE '
PROCESS ING.) - 1

t

£ 4

"MATHEMATICAL MODEL)
A SET OF MATHEMATICAL EprESSlQN3 THAT DESCRIBES SYMBOL]~

CALLY THE OPERATION OF A PROCESS, DEVICE OR CONCEPT.

L]

MEMORY

h THE TERM “STORAGE® IS PREFENREG BY ALL ANYT IANTHROPOMORPHISTS
BUT WMEMORY®™ PERSISTS. IT REFERS TO THE CAPACITY OF A COMPUTER™
TO STORE INFORMATION SUBJECT TO RECALL,: OR TO THE COMPONENT, OF
THE COMPUTER SYSTEM IN WHICH SUCH INFORMATION IS STOREOD.
. " . ') ¥

MEMCRY PROTECTION'
" A SYSTEM OR DEVICE WAICH ASSURES THAT INFORMAY ION RECORDED

- CANNOT BE REPLACED, EITHER® INADVERTVENTLY OR INTENTIONALLY, B8V

INFORMAYTON OTHER THAN THAT INTENDED BY AN EXECUTIVE SYSTEM,
' L)) - \
MICRGELECTRON!CS ' v
THAY FIELD OF ELECTRON!CS DEALING WITH YHE MlNlATURIZAT!DN

OF CIRCUITS BY THE COMBINATION OF A NUMBER OF ELEMENTARY CIRCUITS
INTQ A COMPOSITEQ.

13

. MICROSECOND ' o .

A MILLIONTH PARY OF A SECOND.

4

03 7 C

» - - A

PTG TR A TERIR A S vt 1 et S S O R e e VR S a5 b B B L L o e oo e s et e L bk r Pt Bae R b T g S e g e nd - g T R e f R b e S e S e s ma A TS
) “) . -
. N * ° - w N
- (

/

v

SHIPS CAN BE APPLIED.

L]

.(\. o COMSC GLOSSARY . .
e b PAGE 22 ‘ .
MILLISECOND _ - ,
A THOUSANDYH PART OF A SECOND. °
1 ' [s
N
MNEMONIC CODE .
ASSEMBLY LANGUAGE CODE WHICH ‘IS EASY FGR THE PROGRAMMER TO

REMEMBER BECAUSE OF ITS MNEMON!C NATURE, E.G.y MPY FOR MULTIPLY
AND ACC FOR ACCUMULATOR., . :

~

: -

MON ITOR

ACTIVITIES .

¢ N
o .
. M N ~ . .4
. .

MONTE CARLO METHODS

METHODS OF COMPUTATION BASED ON PROBABILITY THEORY THAT

USE RANDOM NUMBERS AND STYATISVICAL METHODS YO FIND SOLUTIONS YO

VARTBUS TYPES OF PROBLEMS,

-

MULT I-PROCESS ING ’ .
) TO PROCESS MULTIPLE REQUIREMENTS CONCURRENTLY ON A SYSTEM
SO THAT EACH REQUIREMENT IS SATISFIED SEPARATELY.

(|
MULTIPROCESSOR
A MACHINE WITH MULTIPLE AR!THMETIC, LOGIC AND MAIN STORAGE

UNITS THAY CAN BE USED SIMULTANEOUSLY ON MORE THAN ONE PROBLEM,

x

o

. MULT IPROGRAMMING j’

SEE INYERLEAVE,

.
¢

" NONDESTRUCT IVE READ

A READ PROCESS THAT DOES NOT ERASE THE DATA IN THE SOURCE.

NUMBER™ SYSTEM ' §$
. A SYSTEM FOR YHE REPRESENTATION OF NUMBERSy E.Gey THE
DECIMAL SYSTEM, THQ\ROMAN NUMERAL SYSTEM, THE BINARY SYSTEM.

N&NCSECGND & ' ‘
A B!LL!QNTH ARY OF A SECOND. *

-
>

NETS ' -
SYSTEMS OF INTERCONNECTED PQINTS TO WHICH FORMAL RELATION-

'\‘_) v

() kY

3 -

) o ’
a . . ' i "
’ g ’
" T . L |

A SYSTEM THAT REMINDS, CAUTIONS, OR WARNS ONE OF SETUATIONS
_THAT CAN INTERFERE WITH THE PROPER EXECUTION OF INTENDED

T T o m N A T R s e e TS e e S T L S e B o e s T i T R e T T £ O T o A eyt e At et s ke aek v € en e s T 15 EEENDAE 4+ e e £ mn e aae e 'y -

. COMSC GLOSSARY -
PAGE 23~ c : ‘

NUMERICAL ANALYSIS

THAT BRANCH OF MATHEMATICAL ANALYSIS-WHIGH DEALS HITH THE
CONVERSION OF MATHEMATICAL PROCESSES INTO OPERATIONS W
NUMBERS . : . é
. : . A .
& \ ’

OBJECY LANGUAGE

i
- " 7 YHE RESULY OF A TRANSLATION PROCESS STARTING HWITH A SOURCE

LANGUAGE., USUALLY, SYNONYMOUS WITH MACHINE LANGUAGE, -

0CTAL T :
PERTAINING TO THE NUMBER SYSTEM WITH A BASE OF EIGHV.

CEF-LINE
PERTAINING YO EQUIPMENT OR oev1ces NOT UNDER DIRECT CONTROL
OF THE CENTRAL PROCESSING UNIT.

0P CODE ' . | i .
OPERATION CODE. K COMPUTER INSTRUCTION CODE.

\
OPEN SUBRGUTINE
A SUBROUTINE THAT MUST BE RELOCATED AND INSERTED INYO A
ROUTINE AT EACH PLACE IT 1S USED. SYNONYMOUS WITH DIRECT INSERT
SUBROUTINE.. CONTRAST WITH. CLOSED SUBROUTINE.

OPERATOR ' |)
A PERSON WHO OPERATES A MACHINE,

057360 h -
QPERAT!NG»SYSTEM/sso. SUPERVISOR EOR NON T IME~SHARED 360

SYSTEMSJ ~

OVERLAP - .
PROCESSING AND INPuTIOUTPUT YO DO SOMEYHING AT THE SAME

TIME SOMETHING ELSE IS BEING DONE, FOR EXAMPLE, TO PERFORM
INPUT/OUYPUT OPERATIONS WHILE INSTRUCTIDNS ARE BEING EXECUTED BY
THE CENTRAL.-PROCESS ING UN!T.

OVERLAY , |
THE TECHNIQUE OF REPEATEDLY USING THE SAME BLOCKS OF <
INTERNAY STORAGE DURING DIFFERENT STAGES OF A PROBLEM. WHEN ONE

* ROUTINE- IS NO LONGER NEEDED IN STORAGE' ANOTHER ROUTINE CAN

REPLACE ALL OR PART OF IT. N

TR AT 2 T T T g TR s ety =i i A T B T s T sl Sl o e e e e e e TV T e s e 03T

COMSC GLOSSARY '

] v | PAGE g«) y
. OBJECT PROGRAM \ﬁ)
THE RESULT OF TRANSLATING, A PROGRAM FROM ITS ORIGINAL FORM

INVO A MACHINE-READABLE FORM; THE ACTUAL RUNNING PROGRAM,

ON-LINE
OPERATION UNODER DIRECT CONTROL OF THE COMPUTERo TASKS \
PERFORMED UNDER DIRECY COMPUTER CONTROL.

OPEN”SHOP PROGRAMMI NG
A BASES FOR ORGANIZING HORK IN A COMPUTING CENTER IN WHICH
ee. . THE PERSON WITH THE PROBLEM YO SOLVE DOES HIS OWN PROGRAMMING
* WITH OR WIVHOUT HELP FROM PERSONNEL ATTACHED TO THE CENTER. '

3

OPERATING SYSTEM

AN INTEGRATED COLLECTION OF COMPUTER INSTRUCTIONS THAT
HANOLE SELECTION, MOVEMENT AND PROCESSING OF PROGRAMS AND DATA
NEEDED TO SOLVE PROBLEMS.

CPTICAL READER
‘ A DEVICE USED FOR MACHINE RECOGNITION OF CHARACTERS 8Y .
IDENTIFICAT!ON OF THEIR SHAPES.

¢

OPTICAL SCANNING >
A PROCESS IN WHICH A LIGHT BEAM REFLEC YED FROM (OR
/ TRANSMITTED .THROUGH) A SOURCE DOCUMENT IS ANALYZED TO IDENTIFY
. THE SYMBOLS ON THAT DOCUMENT. THE LIGHTY BEAM IS CONTROLLED TN
SCAN THF DOCUMENT IN SOME PREDETERMINED WAY. . .

L
%

ouTPUY '

1. THE FINAL RESULTS AFTER DATA IS PROCESSED IN A COMPUTER,
2. THE DEVICE OR SET -OF DEVICES USED FOR TAKING DATA OUT

OF A COMPUTER SYSTEM AND PRESENTING THEM TO THE USER IN THE FORM

HE DESIRES. .

PARALLEL
' PERTAINING TO THE SIMULTANEITY OF TWO OR MORE PROCESSES, OR
2 PERTAINING TO THE SIMULTANEITY'OF TWO OR MORE SIMILAR OR

TOENT ICAL PROCESSES. :

-4

vPARAMETER \
" A VARIABLE THAT “ES GIVEN A CONSTANT VALUE FOR A SPECIFIC
PURPOSE OR pnocess. - B

23

9

PARITY | | o .
‘AN ERROR DETECTING TECHN!QUE/IN HHICH A REDUNDANT BIT JSs
USED WITH AN ARRAY OF B!Ts SO THAT THE SQM OF EACH Gaaup OF BITS

P

il = = T N e T T N S e T e R e e ket e e

| BT COMSC GLOSSARY - .
. - PAGE 25 - :
.) D . X
[S ALWAYS ODD OR_ALWAYS EVEN. : .
PARITY BIT

A~BINARY DIGIY APPENDED TO AN ARRAY OF BITS TU MAKE THE SUM
» OF ALL THE BITS ALWAYS ODD OR ALWAYS EVEN,

-

’PAR[TY CHECK / .
A CHECK THAY TESTS WHETHER THE NUMBER OF ONES OR ZEROS IN AN

ARRAV OF BINARY DIGITS IS ODD OR EVEN. .

PATCH - ‘ B
TO MODIFY A ROUTINE IN A ROUGH OR EXPEDIENT WAY.

~

PCP ENVIRONMENT
~PRIMARY CONTROL PROGRAM.

PDS ' - .
PART ITIONED DATA SET. ‘ '

oL/ (.
PROGRAMMING L ANGUAGE, LEVEL 1 .
® |)
@RESET y

TO ESTABLESH AN INITIAL CONDIYION,

- '

PROBLEM PROGRAM :
ANY OF THE CLASS OF ROUTINES THAT PERFORMS PROCESS!NG OF THE

TYPE FOR ‘WHICH A COMPUTING SYSTEM IS INTENDED,
v
PROCEDURE. .

PROCESS CONTRDL BY. coﬁpuveas :
" PERTAINING TO SYSTEMS WHOSE PURPOSE IS TO pnov:oe AUTOMAT [ON

OF CONTINUOUS OPERATIONS. THIS IS CONTRASTED WITH NUMERICAL
CONTROL WHICH PROVIDES AUTOMAT [ON OF DISCREYE OPERATIONS.'

¢

PROC

PROCL!B -

PROCEDURE LIBRARY, A LIBRARY OF JCL STATEMENTS CALLABLE BY
 PROGRAMMER S, , e

PROGRAM LIBRARY ‘
A CDLLECTION OF AVAILABLE chPUTER PROGRAMS AND RUUT!NES.:

- 207

- v 9

- CURSE AP RN S B 1 SR WY P G L | iy e g e TR Py ot S o,

B e it e s et oy o

e R i St i e B e S e T i ERR Y LRGBS I TRNE L P T T W Rty SRSy S USRS

AT ‘ : COMSC GLOSSARY .- y
‘' PAGE 26 : ¢ |

I
PAPER-TAPE READER - | N ' <
A DEVICE WHICH SENSES AND TRANSLATES THE HOLES IN A ROLL QF
PERFORATED PAPER TAPE INTO MACHINE-PROCESSABLE FORM, :

-

PARALLEL PROCE SSING
TO PROCESS SIMULTANEQUSLY WITH SEPARATE EQUIPMENT.

" [

M
PATTERN, RECOGNI T1ON /
THE PROCESS OF LOCATING AND lDENTiFY!Nﬁ A PATTERN SUCH AS
_YHOSE MADE BY PRINTED LETTERS, BUBBLE-CHAMBER PHOTOGRAP HS,
ASTRONOMICAL PHOTOGRAPHS AND SPEﬁTRA, XFRAY PHUTOGRAPHS: ANU
CLCUD-COVER PHOTOGRAPHS o

¥

L]

PRINTER .
A DEVICE WHICH PRINTS RESULTS FROM A COMPUTER ON PAPER. .

-

PROBLEM~OR TENTED PROGRAMMING LANGUAGE
AN ARTIFICIAL LANGUAGE (VOCABULARY AND RULES) CONVENIENTLY N
EXPRESSING RELATIONSHIPS BETWEEN A PARTICULAR PROBLEM OR CLASS
. OF PROBLEMS AND THE METHOD OF SOLUTION. SEE ALSO "FORMAL
LANGUAGE, " "PROCEDURE-ORIENTED LANGUAGE," "MACHINE LANGUAGE,"
AND PLANGWAGE, ™

. PRCCEDURE*OR[ENTED PROGRAMM ING L ANGUAGE . \
A LANGUAGE FOR WRITING COMPUTER PROGRAMS THAT CONVENTENTLY
EXPRESSES CERTAIN\PROBLEM-SOLVING PROCEDURES. SUCH LANGUAGES
SHOULD BE DISTINGUISHED FROM PROBL EM—~ORIENTED PROGRAMMING .
LANGUAGES WHICH ARE DESIGNED TO FACILITAYE THE SOLUTION OF A
TYPE OF PROBLEM,
h | o .
PROCESSOR ’ A

A GENERIC TERM WHICH INCLUDES ASSEMBLY, COMP!LING, ° .
GENERATION, ETC. .

Al

PROGRAM (NOUN} o -
. A PLAN FOR YHE SOLUTION OF A PROBLEM. OFTEN USED INTER=
'CHANGEABLY WITH “ROUTINE™ TQ SPECIFY THE PRECISE SEQUENCE OF
INSTRUCTIONS ENABLING A COMPUTER TO SOLVE A PROBLEM. '
PROGRAM [VERB) - e -
YO MAKE A PROGRAM, INCLUDING INVESTIGATIONS OF SOLUTION | .
METHOD , NUMERICAL ANALYSES, APPROPRIATE PARAMETER CHOICES, AND .
SO ON.~ THE WRITING OF A SEQUENCE OF INSTRUCTIONS IS ONLY PARY :
i GF PROGRAMMING ALTHOUGH OFTEN THE TERMS ARE USED INVERCHANGEABLY, °.

) S \

PROGRAM DECK : N
‘ A SET OF PUNCHED .CARDS (DECK) CONTAINING ?Né}ﬁgCTIONS
THAT MAKE UP A COMPUTER PROGRAM. ' '

L

At S et Al bt i desied e duaii e e eI it s s IR SSIE L I S D) T SR R e a4 G T

D A B e e A ,|.-_l.n.,.s..‘;k_.mr_'..u,\'...f I i T pe——— omReay

COMSC GLOSSARY _ b
PAGE 27 .

PROGRAM INTERRUPY 4
: A SIGNAL CAUSING A COMPUTER TO STOP EXECUTION OF THE CURRENT
., PROGRAM BUY TO, SAVE THE STATUS OF THE MACHINE SO THAT THAT
PROGRAM WILL BE ABLE TO CONYINUE AFTER THE INTERRUPTING PROGRAM
IS FINISHED. ALSO THE CORRESPONDING ACTION.

$

PROGRAM MA!NTENANCE
COMPUTER PROGRAMS REQUIRE PERJODIC MAINTENANCE TO REMOVE
ERRORS AND DISCREPANCIES WHICH MAY BE DISCOVERED AFTER LONG |
PERIQODS OF USE, TD CORRECY ADDITIONS OR DELETIONS WHICH MAY HAVE -
BEEN INADVERTENTLY MADE, TGO IMPROVE AND MODERNIZE THE PROCEDURES

e USED, AND YO ADAPY THEM TO USE NEW UNITS OF EQUIPMENT WHICH y N
o - MAY BE ADDED YO THE COMPUTER. . \\
PRCGRAMMING :)
_ THE PROCEDURES CDNTRIBUTING TO THE DEVELOPMENT. OF A SEQUENCE
-~ OF INSTRUCTIONS FOR COMPUTER SOLUTION OF A PROBLEM3 INCtUDES.

PROBLEM ANALYSIS, PROGRAM DESIGN, CODING, AND YESTING.
\' \
& . \

ORQGRAMMING LANGUAGES
THOSE LANGUAGES DEFINED AND USED FOR THE PROGRAMMING OF
. DIGITAL COMPUTERS.

{;/A\\ o |

PROGRAMMING SYSTEMS ' A .
PROGRAMS AND PROCEDURES DESIGNED AND USED TO ASSIST IN THE ‘ “

PREPARATION OF DIGITAL-COMPUTER PROGRAMS. AMONG SUCH AIDS ARE .

- COMPILERS, DIAGNOSTIC PROGRAMS, AND PROGRAMS TD PRODUCE FLON
CHARTS., A . -

AN : *

-

PRCJECT EVALUAT ION AND REVIEW TECHNIQUE .
A MANAGEME NY~CONTROL TOOL FOR OEFININGs INVEGRAYING, AND
INTERRELAYING WHAT MUST BE DONE TFO ACCOMPLISH DESIRED OBJECTIVES
ON TIME. A COMPUTER IS USED TO COMPARE CURRENT PROGRESS AGAINST:
LLANNED OBJECTIVES AND TO GIVE MANAGEMENY [NFORMAYION FOR PLAN-
ING AND DECISION-MAKING. SEE "Cpm,.»

T . . . , S Y
PUNCHED CARD ' :)
1. A CARD PUNCHED WITH A PATTERN OF HOLES TO REPRESENT .

DATA.
2. A CARD AS IN 1, BEFORE BEING puucﬁeo { SLANG) o -

o .
QUANTIIATE .) .
. TD MEASURE OR ESTIMATE THE QUANTITY 0F 3 ra;sxppess<lm ’
" QUANTIETATIVE TERMS, , 4 e

s s - B -v--“;_y*-: P e s R DO T L e e e EE——
II ﬁ - ¥ - . .
~ . coMsC GLOSSARYS . W e
PAGE 28 c | :
' r- - ’ o)
QUANTUR CHEMISIRY .

THAT PORTION OF CHEMISTRY BASED ON THE THEORY THAT ENERGY s .
NOYT. ABSORBED DR RADIAY €0 CONTINUOUSLY BUT DISCONTINUQUSL Yy -IN e

QEFINITE UNITS CALLED QUANTA. R
Ix N)
RADIX oo ' SRR
THE BASE OF A NUMBER SYSTEM TEN FOR THE OBGIMAL, -TWO FQOR.
THE BINARY, FIGHT FOR THE OCTAL, ETC\ -
i | . (
% » . l | & N (’ ’
- RANGE A ~ . Y & . ¢
. THE SET'OF VALUES. THAT A QUANTITY OR FUNGYION MAY ASSUME. R
READ L : T e . L :
TO ACQUIRE DATA FROM A SQUREE- - - ' . 7/ o0 =0 o
) . o ‘ R) .ﬁ:“; N _""lg’;. S o T v ‘ ' : ; 1‘; ‘""":‘_V : o
’) . " T \ - - - l,, . S e) .‘A_.é;. . {;} .
RECORD , . e AL I SRR Lo
A SET OF DATA. S R A N Ty
: o 4. . ‘ ‘ ' 3 . :{&-ﬁg‘% -“q.
RELATIVE ADDRESS ' | - N iaf-:;.;ﬁys&#.
" THE NUMBER THAY SPECIFIES THE DIFFERENCE BETWEEN THE R
ABSOLUTE ADDRESS AND THE BASF ADDRESS. A R A
M \ - B) . e
b . ‘ . -
REMOTE TERMINAL . | R
ANY, DEVICE CAPABLE OF SENDING "AND/OR RECEIVING INFORMATION)
AT A DI'STANT LOCATION OVER A COMMUNICATION CHANNEL.
N B o
RESEY -
TQ RESTGBE Al STDRAGE DEVICE TO A PRESCRIBED !NITIAL srArE,)
NGT NECESSAR!LY THAY DENOTING IERO. \ _] e
._ :) . . S - : : | V. »
RESTART , - -)
TO RETURN TO A Paevxous POINT IN A PROGRAM AND, RESUME
OPERATIQN FROM THAT POINT. ‘ -
RJE | .,.., " .'l l‘ﬂ | .. . : . -) ‘
REMOTE JOB. ENTRY. . ~
| - | J o . o . C
RPG; v ‘ ,
. REPORY PROGRAM GENERATOR. A HIGH LEVEL . BugﬂNFSSwOR!ENTED ", N
PROGRAMMING LANGUAGE FOR CREATING REPORTS. - \ -
. RUN’ -) . l l A ° . . '._.‘u'
A SINGLE, CONTINUOUS PERFORMANCE OF A.COMPUTER RQUTINE,
N . . N '.,. .) ’ ; “
. .’ W . “§ i I S
,.. . . ¢ i) _ -
" . \j 0[) X) A

o+

*

-

'\

TN

-

" RANDOM- ACS%SS MEMORIES

-

Piat
i

.» COMSC GLOSSARY) S
- PAGE 29 .\ s .

'J,

Al

COMPUTER MEMORTES IN WHICH THE TIME REQUIRED TO LOCATE' ' "

" THE NEXT POSIVION FROM WHICH ENFORMAYION-IS TO BE OBTA!NED IS iN

NO WAY DEPENDENT ON THE ﬂUS!TION LAST LOCATED, i .
. . &
, . -) ;\ '

REACT!ON Ttme . N o - <)

- THE TIME FROM THE APPL!CATldN OF A sr:muuus TO THE RESPONSE
_TO THAYT STIMULUS. THE TIME FROM THE SUBMISSION 'OF A J08B 8Y AN --.ﬁgﬁ
INVESTIGATOR TO LTS RETURN TO THE luvesrlcarcﬂ. - . A

ﬂ‘

REAL T!ME S \
7 YHE TECHNIQUE OF COMPUTING HH!LE A PROCESS YAKES PLACE SO
THAT RESULTS CAN BE USED- TD_GUIDE OPERATION OF THE PROCESS.

REGISTER ,)
A SPECIAL DEVICE THAT HOLDS INFORMATION READY FOR) -
MANTPULATION. IT HOLDS ONLY™A PART (SUCH AS A HORD) OF THE ~ _ N

: TOTAL INFORMATYION, IN A DIGITAL COMPUTERs : B .

' S ¢ s S
RELCCATABLE PROGRAM SR
. A DIGITALJCOMPUTER PROGRAN WHICH CAN BE PLACED IN ANY -
PORTION ‘0F THE COMPUTER MEMORY. JHUS A PROGRAM INDEPENDENT OF -

LOCATI ONe A _ . - o «*

)_,; : 4 ‘_ . f—
ﬁc‘k sy * !
RESCONANCE .)
THE REINFORCED VIBRATION OF A BODY EXPOSED TO THE VIBRATION,
AT ABOUT THE ﬁAME FREQUENCYs OF ANOTHER BAODY NR PHYSICAL
MAGN!TUDE. . .

rd

4

ROUTINE - o WS \

A SEQUENCE OF MACHINE INSTRUCTIONS WHICH 'CARRY OUT A
SPECIFIC PROCESSING FUNCTION., e .
scan ~ . T

TO EXAMINE SEQUENTIALLY, PART BY PART,

SEMANT ICS : e - o

THE RELA&@ONSHIRS BETNEEN SYMBOLS AND THEIR MEANINGS.
. Chesm . R
* . SEQUENTIAL ACCESS . 8

' OBYAINING DATA FROM ﬂN INPUT/OUTPUT DEVICE IN A SERIAL

' MANNER ONLY .,

. N :
¢ . -t . / . R
T

& / .

- . by a
” 1
.

) ' COMSC GLOSSARY - | Co ,
. ' PAGE 30 : -
) i

~ SEQUENT 1AL CONTROL

A MODE OF COMPUTER OPERAT-ION IN/WHICH !NSTRUCT!ONS ARE
EXECUTED CONSECUTIVELY UNLESS SPECIFIED OTHERWISE av A TRANSFER
Cr CCNtRQL.

, : . @
SEQUENTIAL OPERATION .

PERTAINING 0 A PERFORMANCE OF OPERATIONS ONE AFTER THE
OTHER, = 7

smapsuor . . ' .
: SNAP A OUMP USUALLY OF A SELECTED AREA OF STORAGE TAKEN
ODURING PROCESSING AT SPECIFIED TIMES PROVIDING A TIME HISTORY OF
THE SPECIFIED STORAGE AREA FOR DEBUGGING PURPOSES. .

sorver - | ?
A DEVICE OR COMPUTER ROUTINE THAT SORTS.

PRSSES
-

SPECTAL CHARACTER . _ - -

: A GHARACTER SET, A_CHARACTER THAT IS NEITHER, A NUMERAL ,
A LETBPER, NOR A BLANK, E.G.s ASTERISK, DOLLAR SIGN, EQUALS SIGN, -
COMMA, PERIOOD.) :

| r

sPOOL, - : ®
SIMULTANEGUS PEREIPHERAL OPERATION, ON LINE.

- -

'STATEMENT ‘ A
o IN COMPUTER PROGRAMMING, A ME AN INGFUL EXPRESSION R
GENERALIZED INSTRUCTION IN A SOURCE LANGUAGE,
. . | N
SYEP _ ‘ ' :
' ONE OPERATION IN A COMPUTER ROUTINE, ..

‘STORAGE CAPACITY . | L
THE AMOUNT OF DATA THAT CAN BE CONVAINED IN A STORAGE
DEV!CE- . _ =

| | .
SUBPROGRAM ° :

A PROGRAM THAT IS A° PART OF ANOTHER PROGRAM . USUALLY -
SYNONYOUS WITH SUBROUTINE. . | , i
SYNBOL

A REPRESENTATION gF SOMETHING BY MEANS OF RELATIONSHIP, -
ASSOCIATION, OR CDNVENT!ON. - .

t

e e s o e S e e o e g e e e s e P B I e s T A A T LA g el A e i S e € AR e ety
v _\g -

» ' b
-

v B @énsqtgLnssaav

N ' Caa .

SYNT AX .. - » |
1 THE STRUCTURE OF EXPRESSIONS IN A LANGUAGE, OR 2 ' THE
RULES GOVERNING THE. STRMCVTURE OF A LANGUAGE. ¢ -
—~ - . s . .

. ‘- . /: ’
SYSGEN . ' '

SYSTEM GENERATION, THE PROCESS BY WHIGH A NEW OPER@T!N'
SYSTEM AND SUPPORT ING SOFTWARE E.G. COMPILERS AND- UTILETY RS
PROGRAMS IS CREATED_!N‘A 360., I ; / i ‘
. , T /N
7 . Ny '[_ ' '.‘.._-
SELF-ORGANE ZING AoAPr!vk SYSTEMS ol

_ANY SYSTEM WHICH CAN CONTROL ITS OWN STRUCTURE SO THAT /
“IT CTAN ADAPT YO CHANGES IN ITS ENVIRONMENT. / - :

I
AN . :) . . /
SELF~ORGANIZING SYSTEMS : ! o

SAME AS SELF-ORGANIZING ADAPTYVE SYSTEMS.
. . e

SENSORS |

*'DEVICES YO DETECT AND MEASURE .PHYSICAL PHENOMENA, SUCH'AS
. TEMPERATURE, STRESS, HEARTBEAI. AND ACCELERATION. .

{
/

STMULAT ION !
REPRESENTATION OF THE ESSENTIAL ELEMENTS QF SOME OBJECT,
. PHENOMENON, SYSTEM, OR ENVIRONMENT THAT FACILITATES ITS CONTROL

AND STUDY (OFTEN BY OR INVOLVING AN AUTOMATIC COMPUTER).

~

; SLOW POTENTIAL
A LOW-FREQUENCY CQMPONENT (APPROXIMATELY 4-5 CYCLES/SEC)
OF THE ELECTROENCEPHALOGRAPH.

2

SOFTWARE ' ~
COMPUTER PROGRAMS AND COLLECT IONS THEREOF, INGLUDING
COMPILERS AND ASSEMBLERS WHICH CAN BE USED TO GENHRATE OTHER §

PROGRAMS. ALSO INCLUDES EXECUTIVE AND DIAGNOSTIC!PROGRAMS o
WHICH CAN BE USED TO SCHEDULE AND TEST OTHER paoc¢Ams. x
" SOLID-SYATE ‘
| REFERS TO THOSE DEVICES WHICH UTILTIZE THE EUECTRIC,
MAGNETIC, OR PHOTIC PROPERTIES OF - SOLID MATERIAL$-E.G.r TRANS- 3
ISTORS, MAGNETIC CORES, ETC. . g
< —~ - . [‘
} sort ‘

TO ARRANGE DATA N AN ORDERED SEQUENCE.

% -) . ‘ | 2': . {‘ ..

4

e

COMSC GLOSSARY ,
e PAGE 32 .

E—y

SOURCE L ANGUAGE
" THE LANGUAGE .IN WHICH A paocana Js OR IGINALLY WRITTEN.
USED YO INDICAYE THATY CONVERSION TO A/ MACHIRE LANGUAGE - I'S_ -
REQUIRED. .
. .\. \ |
SOURCE~L ANGUAGE DEBUYGG ING SN o »
* YHE DETECTION AND CORRECTION OF ERRORS (BUGS) USING ONLY
THE SOURCE LANGUAGE. - :

4
/ R

SOURCE PROGRAM , . »
A PROGRAM IN ITS ORIGINAL FORM BEFORE BEING PROCESSED BY A

COMPUTER. USUALLY REFERS TO PROGRAMS HRITTEN IN A PQUCEOURE*‘

ORIENTED LANGUAGE AS OPPOSED TO MACHINE LANGUAGE.

¥

SPECTAL-PURPOSE
BEING APPLICABLE TO A LMMITED CLASS OF USES HITHOUT
ESSENTYAL MODIFICATION. CONSTRASTED WITH ®GENERAL~PURPQOSE.™

SPECTRAL ANALYS IS ') -)_
SEPARATION OF A SERIES OF VALUES TO IDENTIFY THEIR o
SIGNIFICANUE TO THE PROBLEM IN QUESTION. :

SYORAGE) T, :
PERTAINING TO A DEVICE IN WHICH DATYA CAN BE ENTERED AND
STORED AND .FROM WHICH 'IT CAN BE RETRIEVEO AT A LATER TIME.

STORAGE ALLOCAY ION

THE ASSTGNMENT OF STORAGE LOCATVIONS TO MAIN ROUTINES AND,
SUBROUTINES THEREBY FIXING THE OPERATING VALUES OF ADDRESSES IN
RELCCATABLE PROGRAMS,

8
STOREG)PROGRAM

A _PROGRAM IN THE INTERNAL STORAGE SECTION WHICH CONTROLS
THE BEHAVIOR OF A COMPUTER OR OTHER DEVICE. THE COMPUTER THUS
HAS ACCESS TO AND CAN CHANGE ITS OWN PROGRAM, '

LS . -

STORED-PROGRAM COMPUT, ’ r
A DYGLTAL COMPU THAT STORES INSTRUGTIONS IN MAIN CORE
AND CAN BE PROGRAMMED TO ALTER ITS OWN INSTRUCTIONS AS THOUGH

THEY WERE DATA AND CAN SUBSEQUENTLY EXECUTE THESE ALYERED

INSTRUCT JONS .

SUBROUTINE

A PROGRAM SO ARRANGED THAT CONTROL MAY BE TRANSFERRED VO ITY
- FROM A MAIN PROGRAM, ANDy AT THE CONCLUSION OF THE' SUBROUTINE,

CONTROL REVERTS YO THE APPROPRIATE POINT IN THE MAIN PROGRAM.

304 -

“‘.@,

4

. TaBuLATE

/

.COMSC_GLOSSARY
_ PAGE T 33

THIS AVOIDS: REPEATENG THE SAME SEQUENCE OF INSTRUCTIONS AT DIF-
FERENT PLACES. iN THE PRINCIPAL PROGRAMS. _
: L
J‘

S .

L3

SUPERCONDUCTIVITY * | :
SOME METALS AND A GREAT NUMBER OF ALLOYS LOSE ALL THEIR {
ELECTRICAL RESISTANCE AT VERY LOW TEMPERATURES. THE TEMPERATURE
AT. WHICH THIS OCCURS MAY VARY FROM A ‘RRACTION OF A DEGREE TO A—
HIGH OF APPROXIMATELY 9 K FOR NIDBIUM. -THESE METALS ARE CALLED
SUPERCONDUCTORS , AND THE TEMPERATURE AT WHICH THE TRANSITION TO
SUPERCONDUCTIVITY TAKES PLACE IS KNOWN AS THE CRITICAL TEMPERA-
TURE. VERY HIGH MAGNETIC-FIFLDS WILL CAUSE A 'SUPERCONDUCTING
MATEREAL TO TRANSFORM TO THE NORMAL STATE. THUS FAR, APPROX-~

IMATELY 23 ELEMENTS HAVE BEEN FOUND TO' BECOME SUPERCONDUCTORS IF

TAKEN YO SUFFICIENTLY LOY TEMPERATURES.
: L

SHITCHING ' |
THE CGNNECTION OF TWO PO!NTS OF A NETWORK AT CONTRDLLABLE

"INSYANYS OF TIME.: -

1

~

SYRBOLIC LANGUAGE
SEE MNEMONIC CUDE.

¢

SYSTEM) !

AN ASSEMBLY, OF UNITS, DEVICES, OR MACHINES UNITED BY SOME
FORM OF REGULAT INFERACTION TO FORM AN ORGANIZED WHOLE. OR: A
COLLECTION OF OPERATIONS AND PROCEDURES, MEN AND MACHINES, BY
WHICH AN ACYIVIYY IS CARRIED ON.

" SYSTEMS ANALYSIS - : ' (

THE STUDY OF ARRANGEMENTS OF TERMS OR ENTITIES MAKING UP A
SYSTEM, ESPECIALLY ARRANGEMENTS THAT COMPOSE A LARGER AGGREGATE,

s et o

SYSTEMS PRDGRAMMING

THE DOEVELOPMENT OF PROGRAMS WHICH FORM OPERAT[NG SYSTEMS FOR
COMPUTERS, “SUCH PROGRAMS INCLUDE COMPILERS, TRANSL ATORS, MONI-~

TORS, GFNERATORSf ETC.
\ . —— -

TION OF DATA, EACH ITEM BEING UNIQUELY IDFNTIFIED
EITHER B GME LABEL OR BY ITS RELATIVE POSITION.

/

1 YO FORM DATA INTO A" TABLE, OR 2 TO PRINT VYOTALS.

TAPE ~ : ' ;
"SEE MAGNET IC_ TAPE. r ‘

/

LR

L]

'svern UTTLIZES COMMUNICAT (ON FACILITIES.

TEMPORARY STORAGE

. :
, COMSC " GLOSSARY
. | CPAGE 84

L | \

\
/

»

TAPS Y0 CﬂRDS
PERTAINING YO EQUIPMENY OR METHODS THAT TRANSMIT DATA FROH

EITHER MAGNE TIC T&PE OR PUNCHED TAPE T0 PUNCHED CARDS .
<

~

TAPE UNIET é}' s - - .
'.. A DEVICE COMTAINING A VAPE ORIVE, TOGETHER RITH READING AND

HRITING HEADS AND ASSOCIATED CONYROLS.

[

\

"TELEPROCE SSING) ' .

A FORM OF INFORMATYON HANDL!NG IN WHICH A DAVA PROCESSING®

° ‘as.

)
IN PROGRAMMING, S}DRAGE LOCAT IONS RESERVED FOR lNTERMED{ATE

"RESULfSo SYNONYMOUS® N!TH WORKING STORAGE. G

!

TERMINAL :)
A POINT IN A SYSTEM 0OR COHMUNIC&TIUN NETWORK AT HHICH DAT A
CAN EITHER ENTER OR LEAVE,

v

- TESTING

THE PROCESS FOLLOH!NG DEBUGGING OF A COMPUYER ROUTINE . TO
VERIFY THAT THE SOFTWARE AND/OR THE HARﬂH%RE IS FUNCTIONING
PROPERL Y. :

~

"YRANSCE T VI NG e
A PROCEDURE INVOLVING THE seublNA;AND/OR RECEIVING OF DATA
WIA A REMOTE TERMINAL .

-~

TRANSLATE ‘ o
TO,CONVERT FROM ONE LANGUAGE YO ANOTHER LANGUAGE, E+G.’ FROM

FORTRAN TO MACHINE LANGUAGE.,' .
. l. ‘ . . o

"TELEMETERED EXPERIMENTAL DATA

INFORMATION WHECH HAS BEEN MEASURED AT‘A DIQTANCE BY THE
TRANSMISSION OF A SUITABLE SIGNAL BY TELEGRAPH, TELEPHONE, OR
RABIG.

TERMINAL UNIT , ~ .

A DEVICE, SUCH AS A KEY-DREVEN DR VISUAL DISPLAY TERMINAL, |
*WHICH CAN BE CONNECTED YO A COMPUTER OVER A COMMUN ICAT IONS
CIRCUIT AND WHICH MAY BE USED FOR EITHER INPUT OR OQUTPUT FROM. A
LOCATION EITHER NEAR OR FAR REMOVED FROM THE COMPUTER,

- 33 Rty - R L — N . 0} s - SR R el LA A g S s T T e

Y

| .

m—— e = s e, Y e e e S 22 St & R S B, L T

*
-

© COMSC GLOSSARY
' PAGE 35

THIN-F (LK MEMORY >

A MEMORY ELEMENY MADE-BY ODEPGSITING MAGNETIC ALLOYS IN
LAYERS SO THIN FHAT DIRKECTION OF MAGNETIZATION CAN BE SHJ TCHED
EXTREMELY RAPIDLY., : .

1\
TIME SHAR!NG , ’ '
A TECHNEIQUE ALLOWING EXECUYION OF Two OR MORE FUNCT IONS h

- ESSENTIALLY AT YHE SAME TIME, BY ALLOCATING (IN ROTATION; FOR
JINSTANCE) SMALL OIVISIONS OF THE TOTAL TIME FOR THE PERFORMANCE

" OF EACM FUNCTION. A SYSTEM BY WHICH SEVERAL “CONSOLES ARE CON-

LNECTED TU A LARGE CENTRAL COMPUTRER WHICH 1S PROGRAMMED SO THAT,
ON CALL, IT CAN GIVE SHORT BURSYTS OF TIME INTERMITTENTLY TO EACH
 CONSOLE. _ R - AL _ h

e -

TOPOLOGY ..
A BRANCH OF MATHEMATICS CONCERNED WITH THE RELATIONS OF
GECMETRIC FORMS WITHOUY REGARD TO YHEIR SIZE OR MFASURE.
\ . -

S 4{/
TRANSDUCER S

A DEVICE WHICH CONVERYTS ENERGY FROM ONE FORM TO ANOTHER,
AS A HI-FI PICKUP CARTRIDGE CONWERTS MECHANICAL TO ELECTRICAL
ENERGY .

“
TUNNEL DiODE . /
THE TUNNEL DIODE IS A SPECIAL YYPE OF P~N JUNCTION DIODE.
AS ONE INCREASES THE VOLYAGE ACROSS THIS DIODE, THE CURRENT EIRST
INCREASES AND THEN DECREASES, AND THEN INCREASES AGAIN. THE
REGION WHERE THE CURRENT FALLS AS THE VOLTAGE RISES IS CALLED A

- *NEGAT IVE-RESISTANCE" REGION. THIS NEGATIVE-RESISTANCE REGION

.- GIVES THE -DIODE MANY PRACTICAL USES. THE NAME "TUNNEL DIODE™ .

_LARGER CURRENTY IN THE COLLECTOR.

COMES FROM A QUANTUM MECHANICAL EFFECT ON WHICH THE DEVICE- IS
BASED. IN THE TUNNEL EFFECT - IT_ IS FOUND YHAY THF WAVE NATURE OF

- ATOMIC PARTICLES SOMETIMES ENABLES THEM TO GET YO THE OTHER SIDE

OF A BARRILER. DESPITE THE FACT THAT THEY 00 NOT HAVE ENOUGH -
ENERGY VO GEY OVER THE YOP OQF THE BARRIER. THE PROCESS IS ONE
OF PENETRATION OF THE BARR!ER AND HENCE THE NAME “TUNNEL EFFECTY.»

N— e

”

TRANSISTOR :)
A TRANSISTOR IS BASTCALLY A DEVICE MADE BY ATTACHING THREE

"WIRES YO A SMALL WAFER OF-SEMICONDUCTING MATERIAL, THE SEMI~

CONDUCTING -MATERTAL 15 A SINGLE CRYSTAL WHICH HAS BEEN SPECIALLY
TREATED SO THAT ITS PROPERTIES ARE DIFFERENT AT THE POINT-

WHERE EACH OF THE WIRES IS ATVTACHFD. - THE THREE WIRES ARE USUALLY
CALLED THE "EMITTER, BASE, AND COLLECTOR, AND THEY PERFORM FUNC-

CTIONS SIMILAR TQ THOSE OF THE CATHOODE, GRID, AND PLATE OF A-
- VACUUM TUBE (IN VHE SAME ORDER). THE TRANSISTOR IS USUALLY

WIRED INYO A CIRCUIT IN SUCH A WAY THAT A SMALL CURRENY YO BE
AMPLIETED I1S- SENT INTO THE BASE AND PRODUCES A GORRE SPONDINGLY

s

T30y

: COMSC GLOSSARY
. PAGE 36

TURN=ARQUND T IME
THE TIME ELAPSED BETWEEN THE SUBMISSION OF A COMPUTER RUN
BY AN INVESTIGATOR AND THE RETURN TO HIM OF THE \RESULTS OF THE
,RUN. WITH THE CLOSED-SHOP OPERATION OF A LARGE OMPUTER, THIS
INTERVAL ‘MAY BE FROM AN HOUR TO MORE THAN A DAY. THO OR THREE
HQURS IS USUALLY CONSIDERED YO BE A SHORT TURN-AROUND TIME.

r - N v

~ ®

[LI

TRUTH' TABLE . ' o '
. A TABLE THAT DESCRIBES A LOGIC FUNCTION BY LISTING ALL
POSSIBLE COMBINATIONS OF INPUT vV LUES ,AND INDICATING ALL THE
LOGICALLY TRUE OUTPUY VALUES," ef,

£

UNDERFLOW

" - PERTAINING TO THE CONDITION THAT ARISES WHEN A MACHI NE
4COMPUTATION YIELDS A NONZERO RESULT THAT IS SMALLER THAN THE
SMALLEST NONZERO QUANTITY THAT THE INTENDED UNIT OF STORAGE . IS
CAPABLE OF SYORING. * - \

. UNLT
1 A DEVICE HAVING A SPECIAL FUNCTION, OR 2 .A BASIC
ELEMENT. -) - .

UNIT RECORD EQUIPMENT :

. ELECTROMEGHANICAL MACHINES USED Y0, PROCESS DATA RECORDED
ON PUNCHED CARDS.. OFTEN USED AS INPUT/OUTPUT, DEVICES CONNECTED.
YO AN ELECYRONIC STORED-PROGRAM COMPUTER., C I

: ~ ' : \
VARIABLE . ' | o
A QUANTIYY THAT CAN ASSUME ANY OF A GIVEN SET OF VALUES.
ﬂ .] K - ~ .))
VERIEIER -

.- A DEVICE.SIMILAR YO A CARD PUNCH, TO CHECK ?HE INSCRIBING OF
DATA BY REKEYING. I |

L}

VERIFY =
TO CHECK THE RESWLYS OQF KEYPUNCHING,

+

VAR TABLE~CAPACITY DIODE | '

A SILICON SEMICONDUCTOR DIODE IN WHICH THE CAPACIY ANCE,
VARYING AS A FUNCTION OF YHE BYAS VOLTAGE, IS USED) AS A CIRCUIT
ELEMENT, ALLOWING YHE DEVICE TO BE USED AS A VARIABLE~REACTANCE
CONTROL DEVICE OR AMPLIFIER. - .

!

WARM “$T ART
ONE OR MORE PROGRAMS STYORED ON SPOOL PACK.

e 1 Gl Eanbntnnl SEi ol S SRS S 4

= TR e e s

~ “COMSC GLOSSARY
PAGE 37
[. % -~‘ . v
HRETE - ‘ ' o
YO DELIVER DAYA TO A MEDIUM_SUCH AS STORAGE. .
HORD

A SEV OF CHARAC?ERS WHICH HAYE ONE DORESSABLE, LOCAT!ON .

-AND ARE TREATED AS ONE UN!T.

WORD S1ZE . -
THE NUMBER OF CHARACTERS IN A WORD, SYNONOMOUS WITH "WORD
LENGTH, ™ | .
¥ !
.
.
) ' ©
¢
W)
309

-

~ APPENDIX III

o : Running & WATFIV Job on the YIBM System/360 S
' yodel 65 User Teréiyal

‘ o~

Sactibn*A of this appendix contains a aelfwguided tour of

the Univeraity Computer Center facilities. Section B describes

R N e e e . -
S e) _
> - the control cards that are used for “running WATFIV jobs. A pro-
- cedure for actually runﬁfng a job 1s gilven in Section C.
o) &

»

@

B TR D i S VI S NSO S
Y T
)

L]

THEUTS FUNe TR et

Center before you attempt to run any jobs on the computer. The .

V3 R kit == e R METRANI L S LR TR T+ TEITYS A AR TR T e e #1111 o 7+ 4 1 kom et B S 4o 2a¥En BTV T

. L 3
¢ . /
\
* [} m R »
. . g
|) | \ :
\w/«I Séction A . ' ‘

The Univers;éy Computer Center-Faciliti8s \

You'need to know your way around the University Compufer

9

following pagea contain a map and a guide to the user area of the
Computer Center in the basement of the Mathematical Jciences Bulld-

ing. Take the self-guided tour, referring to the map and the guide

St ey

following the map.,

Cowes -
"

| III'..Z 3 11

¢

T.—— - oI ST S e PT

o . Ty o T T T e e
M&p_of the University Compg;er Center, MS Bas&ment‘
&) . .
. @i N o/
o . e]
MS 011 - :
Computer Room’ \)
9 8
cpu
tu M8 010 6 7
\ -
|) __ R b g .
du v du i 3,)
. i
v
\ MS 12-A R
’ . Stalrs
1 2 2 *
) -
MS Q9 10
11 f
12
w 12 ; a (E
%
* |
L] l ‘
4
l 12 7
— |) % 7 .
- . MS 06 _
Stairs ; 12
1 i : ' Elevatore -13 "
20 R
MS 03 14 16
19 18 |Ms 04
T b 15 .
> : .
| - _ S, s
| g 1o —

)

.Gulde to the Ma} of the University Cowmputer Center, MS Basemeht

basement.

3.

5,
6.

The numbers below correspond to the numbers om the map of the MS

Start at "1" and check off each item as you go.

© This is the SupEfViéor & office. " Report’ any "malfunctions

or difficultiea with any equipment (keypunch machines,
card reader, line printer etc.) to che suparvisor.

The console with the blinking lights ia part of the cen~
tral. processing unit™ (dpu) of. the IBM System/360 Model
65 compyter. This unit,is the heart of the computing
system. Behind the console is the memory unit, contain~
ing 1 572,864 addresseble storage locations (or bytes).

In the foreground’along the wall to your left and to)
your right.is alind of disc drive units (du) for storing
and retrieving information using magnetic discs. (You

will probably.see some'disc pack covers sitting around
the area. They look like plastic cake containers.)

’ ngﬁhé right and in front of the central processing'ugit

s a line of magnetic tape drivegunits (tu) fior storing
and retrieving information. (Data transfer with magnetic
tape units 18 slower than with disc units by several or-
ders of magnitude) .
Moax of tha other units in the room arg control unitas
for the various input/output devices.

This room contains the usef terminal of'ihe'ébmputer.

~

" This atéa, like all other areas, must be kept clean,

Count tha numbar of waste containera'in this room.
. .3

Find the‘name of thia unit on the nameplata. ° o

Acquaint yourself with any ‘signs and inatructiona taped

to the machine. You will need them latex.
g

< L]

Tind two seta of "START“ and "'8TOPR" buttons.- . A

Please raadvand observe tbe "No Smoking sign,pn the Wall.

Find the name of this ualt on the nameplate. o

-

hl

Acquaint yourself with any signs and instructions tapead

to this machine. You will nged them later. s, ,
/ . .] . .
Locate the "END. OF FILE" and "START" Buttons. . . N

7. g On the wall are the instructions for using the cdrd -
w* ' : feader. At the time wheg you are réady to“use the
. y card reader, read thesg directions caréfully.
By Along this wall is the inpdf/output area for Jobs that
are run "ing#ide" on the computer by an operator. Jobs
R " are -submitted at ‘the window to youx left and are pick-
' ed up from the bins. You will not be using this service
in thig course.

>
a

9. - In the window.where jobs are submitted is a tray con- - ;'l
taining control cards for ruming jobs on the computer.
. " The only control cards you will need for this course

are $JOB, SENTRY, and $IBSYS, some. of which- should be
available in the tray., (You don't need to take the
.cards now.) :
4 . At the back of the tray is a supply of rubber bands
) for putting around decks 6f computer cards. :

» . Ve i . " . N
Just to the right and’ above the window ig a button for) s
calling an operator whenever you need to report diffi-
culties with equipment. : - :

« 10, This is a cathode ray tube (CRT) display upnit that shows A
the status of jobs being run ip the computer. You will

not need to usde this unit in this course, but 1t's sort

of fun to watchy - :

. . , ‘ ' ,
11, * Beside.tlie CRT unit is a bin of OMR cards (computer cards
, . that can be marked with a pencil). .

12. - 'These are work areas for your\con¥énienca. PLEASE! KEEP .)
THESE AREAS CLEAN! :

13. A diagnostic lab is operated in this area for studeats .
enrolled in basic computer secience programming courses.

. This dervice provides help for you when you do not under-
stand diagnostic messeges on your computer output. -

14, - This 1s the user Reypunch area, How many waste containers
can you find in this room? 4 PLEASE USE THEM! KEEP ' -

THIS AREA CLRAN! - . | .

A

15. *Please read and observe the "No” Smoking, No Drinks" sign.
A . < * - P }.
16. ' The dark grey keypunch machines are model 26 machines.

. They :are used primarily by students enrolled in COMSC 2112.

Lo L : 111.5 3-‘! 11 ') ’ - ‘; .

c)) . B o
. - . . - ' L4
) = [P . P . . . ~ - _ . .

3

TTETATT SR Sy s e

1‘7'

18.

19.

20.

il s i R s e TP,

AT L YIS, TS 4 AR < e an 8 a = §ms s T o R YR 2 B e
. - — FERNE U

The light grey keypunches are model 29 machines.

' Please read and observe the instructions taped to ’ _ /
some of Ehﬁkﬂggk tops of the machines. PLEASE CLEAN’
UP YOUR MESS! o
- & | S T e

Notice the card bins containing blank (unpunched) com- «
puter cards placed among the-keypuneh machines. 5 ";f

A L

X

This room contains unit record equipmsnt which you

will not need for this courseé

There are keypunches for making corrections only located
here for your c0ﬁvaﬁ1enca. _ - : T

Notice that there is a time limit on the use of these .

_machines, which must be observed.

You're on your own to find your way out.

~ R ST

Section B

WATFIV Control Cards | '

‘Three control cards are requIraé for\allJWATFiVigbbs: $JOB,
' - Y '

\ SN - :

SENTRY, and SIBSYS.

The 3J0B card ‘initiates the accountiug routine uaed by the

Compgter Center for chargea and records; it alao;initiates the

compile phase during which timexche Fortran program is gompiled

or translated.
The general form fox the $JOB ca®d that you need for this

course is shown below: @

$JOB vvvvv,xxx~yy~zzzz Your rame
/ . ®
" -vvvvv = the project number assigned to this course by the

Computer Center,)%aed for accounting purposes.

xxx“yyuzzzz ~ an assigned identification number used for

< -

the keeping of records in the course.

Your namé must be preceded by. at least one blank,

~

Thé $JOB card shéwn above i8 used with jobs that are punched

on model 29 keypunch maghines. If you use a model 26 kaypunch

then the general form of the $J0B card includes a KP parametex:

L3

$J0B vvvvv,xxxwiy«zzzz,xrﬁOZG Your name ' N
. b 4

The 8JOB card may contain additional parameters and options

that are beyond the scope ?ﬁlthis course. Refer to the section

III.? 316

~

1

e

.
titled/zﬁAfEIV Job Card" in APPENDIX VIII if you need more infor-
m@tion. S T .

The JENTRY card initiates the exscution phase of the job
during wﬁich time the instructions generated by the compiler are’
executed. The control information, SENTRY, is punchad in columns
laé,of the Eavd.

\

The $IBSYS card terminates the job, vecording the necessary

accounting information. The control inforﬁatiop, $1IBSYS, is ‘

. punched in columns .1-6 of the card.

Place yohr cards in the following order when you rum a job:

" . $JOB - ' .
Program deck
SENTRY
Data cards, if any
SIBSYS - °
?\.
.) .
TIX.8

2

T S, T

sma s T

ﬁectién C

Running a WATFIV Jdb

Now that you know your way around, try running a Job ol the

' 1.

7.

8.

____user terminal in room 010.

‘Take your punched program deck and place the proper cohe
trol cards with the-program géck as described in Se;tion
B. . P

Read the sign “Instructions for'Uaing Card Reader" on the
wall in room 910. : w | .

Reaé the instructions attached to the card reader.

In your mind go through a dry run of putting your caréa

onto the card reader and starting it, but don't do an

actual rum yet.

k]
A

Read "Additional Idstructions for Operating the. IBM 2501

Card Reader" contained in APPENDIX IV, °

14

Read "Instructions for Using the IBM 1403 Printer" con-

tained in APPENDIX V, I v
_ A
Oncagmore referring to the sign on the wall, try running

your job on the card readar,'and,ggt your output from the

line printer.
Be sure that you pick up your deck (Careful! Not someone
else'sl) from the card reader.

Move out! Don't loiter in the ferminal rHom.

e e e e

1

Dt A S b bt Stk

e T

/

2%

APPENDIX IV

Additional Inmstructiouns for Operating the IBM 2501 Card Reader

* The

buttons.

control panel of the card reader contains several lights and
The top row contalns signal lights and the bottom row

contalng push buttons. >
o

VALIDITY
CHECK -
(yellow)

FEED
CHECK
(yellow)

END OF
FILE
(ysllow)

CHECK
(yallow)

POWER
ON

(white)

The
0]:.
2.

3.

END- OF
FILE
(blue)

OMR CHECK
(yellow)
UNDEFINED

NPRO
(blue)

START
(green)

. STOP

(red)

ia

O s

following three lights indicate normal operating'conditions.

The white POWER ON light indicatdés that the machine is on.,
The green READY light will be on when the reéader 1ls reading
cards and evaerything is "go." Bven though the reader may
stop, as long as the READY light is on, it is still "go."
The reader is probably waiting for the computer or the line
printer 1f it stops in the READY condition.

e
The yellow END*GF FILE light comes on whenaver the END OF FILE
button is pushed and goes off whenaver the READY light goes
off. This light signals that the last cardethrough the reader
will be put into the stacker; otherwise, the last card will
remain inside the reader.
fcllowing four lights indicate abnormal conditions which cause

card reader to stap —~—

+

HECK'light signals that a card contains
There are at least thivee common causes:

The yellow VALE
an ‘invalid pudch.

one or ‘mork cards placed upside down or backward in thg

feed hopper; .

2.

b.. a card with more than one characcer punched in a column
of the eard;

LSSl anatuch St L i e e St e Tl P = i e — S

¢. a card punched off center. -

3

2. ‘The yellow READ CHECK light indicates that the card was mis-

read. Each card 18 readrtwice by the card readsr, and the

two raadings are comparaed. If they are not identical, a "read’
check" stoppage occurs. Usually this condition is caused by
foreign matter inside the holes of the card or inside the
machine itself, but may also bae caused by a defective card.

3. The yellow FEED CHECK light indicates a problem in the card

handling mechanism. Usually this condition is causéd by a
bad card, especially a card with a blunted bottom edge (the
9~edge) or a card that 1s not flat.

4, The yellow OMR CHECK light indicates an invalid OMR card.

This tondition should not occur 1if you use the OMR cards pro-
vided by the Computer Center, but it could occur if the OMR
‘feature is not functioning properly. The UNDEFINED light is
disconnected and should never come on.

The buttons on the bottom row of the control, panel control the
operation of the card reader.

1. END OF FILE (blué) must be pushed in order for the last card

2. ST

4.

processed by the reader to be ejected into the stacker. Other-
wise, the last card remains inside the reader. § Always push
this button whenever you are using the card.reader. (If you
"lose" your $IBSYS card in the card reader, you forgot to

push the END OF FILE buttond) .

“(green) must be pushed in order for the reader to operate.
ushing this button causes the READY light to come on, assuming
that operation is normal. .

NPRO (blue) is used for ejecting cards from inside the reader

.. witheout processing them. This button is used primarily when-

ever ah abnormal stoppage occurs (indicated by a FEED CHECK, OMR CHECK
READ CHECK, or VALIDITY CHERK 1light) for getting cards out of

the reader and into the stack@. This button is not functional

if cards are in the feed hopper or if the STOP button has not

been pushed. . N

-

STOP (red) 1is used for stopping the operation\ of the card reader
and for releasing the reader from the contro)’ of the computer.

-

. WHAT TO DO IN CASE OF STOPPAGE OF CARD READER .

#

Light on , : Procedurs .

HEADY Check the PRINT READY light on the line printer. If the light is off,
pueh the line printex START button.

Wait. Operatipn should resume momentarily.

If operation does not rssume, then there may ba a problam in the
- computer syestem. You may wish to remove your deck and return

later.

T

How gg{raﬁéﬁé your deck from the reader

i Push STOP.

‘Remove csrds from the feed hopper (or juat lift up on the
carde and hold them above the bottom of the hopper).

Push and hold NPRO momentarily until all cards have besn
ejected into the stacker. AN

Remove your cards from the stacker (and from the feed’ hopper,
if you have not done so).

*>

VALIDITY | The last card ejected into the stacker §é£bre stoppage 1ls the v
CHECK of fending card. ” - -%

Is the of fending card backward or upside down?

NO. Remove your deck from the reader using the instructions
above under "READY." Check the card for an invalid punch
(usually more than one character punched in a column of
.the card) ‘and for off center punchas. Repunch the card

and try again. . .

-

- YES. You can recycle the card through the reader as follows: -
\. Push STOP. - . T
Lift up and hold the cards in the feed hopper.

Push dand hold NPRO momancarily until all cards have been
: ejected into the stacker. -

Y

Take the offending card and The ejected carda and place
- them properly in the feed hopper under the cards you
are holding up. '

s _ Be sure thsi the cards in the hopper are atraight and
. K ' nuatly stacked; then push START.

Q . ' o Iv.3 .
I 321

1

&

ki&ht on ' :7 1Proc$§u;e

READ The last card ejected into the stacker before stoppage 1s the
CHECK - , offending cavd. Recycle the card through the readey as follows:
Push STOP..

Lift up and hold the cards iﬁ the feed hopper.

Push and hold NPRO momantarily until all cards have been ejécted
into the stacker. ‘

Take the offending card and the ajected cards and place them
properly in the feed hopper under the cards you are holding

Be sﬁra chai thi carfls in the'hopper'ar& straight'and neatly
stacked° then push START.

If read chack accurs again, ‘remove your éaﬁds using the instructions
under "READY" above, repunch the of fending card, and try again.

@ i . .,/
- Il
FEED 1. The botstom card in the feed hopper is probably the offending card.
CHECK : ;)

Is the welight on the cards in th%)feed hopper?

NO. Inspect your cards in the hopper for damage. If they are
OK, place chrds and weight properly into the feed hopper,
and push START.

YES. Probably one oy more of your cards in the feed hopper have

. blunt bottom edges or are not flat. Remove your cards from

. _ the reader using the instructions under "READY" above. Re-~
punch damaged cards.’ (Sometimes you can repair blunt edges
by placing the card on a flat surface and running the flat
side of your thumbnail along the edges; the rapair job 1is
only temporary, however.) :

N .
‘ Spmetimes a feed check means a "card jan" inside the reader. In
. . . such cases, secure the help of the Operations Supervisor (MS 12A)
or an operator from the Computer Room.- o .

— o

- as e o - A : 3

oMR | Proceed exactly as in the case of a READ CHECK, replace the offend-

. CHECK ing OMR card with a new ome. If the condition prevalls, report
- it to an operator or to the supervisor.
4 . . \\

When all else fails, secure help from® the Operationg Supervisgor -
(MS 12A) or an operator from the Computer Room. DO NOT ATTEMPT
< T0 REPAIR MALFUNCTIONING EQHIE\\J/ -

. N ¢

Q - .' V.. -
JERIC | 322

. | ., APPENDIX'V

Instructione for Using the IBM 1403 Printex \ -

The control psnsl for the 1403 Printer is on the fromt side in the upper lafﬂr
hand cornax. Thére are seven push buttons and five sigosl lights.

3

! sTART | SRONE SI0P | PRINT ,

- (green) | ™ ' (red) READY PRINT

R (blue) Egg gF CHECK

~ .-} CARRIAGE | CARRIAGE | SINGLE 1 _pooug e . BYNC . oL . . e
SPACE RESTORE CYCLE CHECK CHECK
(blue) (blue) . (blue) -
- CARRIAGE
' $TOP
b .o : (red)

The only buttons with which you will be concerned are START, STOP, and CARRIAGE

RESTORE. (,

The green START button (there is also onéoon the back side in the upparA;ightw
.. hand corner) puts the printer in the "ready" state and turns on the white PRINT
READY light. The line printer must be "ready" im order for it to operate and
- in order for the card reader to functiou. -

The red STOP button (there is also one on the back slde in the upper right-hand
dorner) stops the operation of. the printer add relesses it from the control of
the computex. (Pushing the STOP button will usually also cause a normal, tem-

4

porary stoppage of the card reader.)

The blue CARRIAGE RESTORE button causes the top of a nevw ﬁage df paper to be
positioned in the print position, This button is not functional until the
8TOP button is pushed. ' ’ . :

The END OF FORMS, FORMS CHECK, PRINT CHECK, and SYNC CHECK lights indicate ab-
normal. conditions and cause stoppage of the printer. Secure the help of the
. Operations Supervisor (M8 12A) or an operator in the computer room if ome of
- thess lights comes on. DO NOT ATTEMPT TO "FIX" THE EQUIFMENT.
. - - t.-

ST ™)
‘Lo Check the PRINT READY light. If it is not on, push the START button.

4
2, .Mhen the printer is finished with your job and if other people are running
jobs behind yours, wait until your output comes into view at the top on the
ack side of the printer. Start a tear on one snd of the perforation at the
bottom of your last page, and then pull down on the paper sharply at a slight
angle. The paper should tear cleanly if you do this guickly. ‘

.6 i ¢ N ' Il.‘.
V. 1 . * - RN

393

How To Use The Line Printer .

o T e, S w1 e

When the printer is finished with your job and no other paople are running
obs behind yours, then push STOP, push CARRIAGE RESTORE three times ouly
JMOra times juat waste paper uunecessarily), and push 8TART. The last page

of your output will then bs near the top on the back side of the printer.

’ , Then start a tear on one end of the perforation at bottom of your last page,

and then pull down on the paper sharply at a elight angle. The paper should
tear cleanly if you do this quickly.

Q

rd

It is always much eagier to tear the paper when it 1s near the top of the’

printer on the back side. You can also do it more quickly near the top.
Somatimez-however, circumstances beyond your control require that you tear

it off at the bottom of the printer; but ordinarily you can tear the paper

near the top even though the printer is running.

»
If it becomes necessary to stop the printer while you are tearing off your
output or for some other veason, then push the STOR button, correct the
difficulty, and then push START.

V.2

B

'cut off the reat of the cards. -

A L e ST VP A e T

APPENDIX VI

How to Get an 80/80 Listing With the

—~— System/360 User Terminal

The 80/80 1istin£ feature of tha User Terminal produces a

_liﬂning\gfupuncheg_gx QMRMcg:damgg”thm;inghpxintgy:ﬂ_Ihisiiama__mm“m

convenient way of checking cards for errors or fot Just reading

\.

what is punched or marked.
Two control cards are required: “

123456789 »
$LIST
$ENDLIST

-

“Place the SLIST card in front of the cards t@ be listed, and place

!

the SENDLIST card behind the cards to be listed. Be sure to include

the SENDLIST card; 1f you omit it, the terminlal will remain in the

" ldst mode. ° _ * E

Usually there are SLIST and SENDLIST cands “in the card box
beside the card reader or in the tray of cont} 1 cards in the window
where jobs are submitted. Replace the cards when you finish with

& .
them. If they are not available, then puhch_ydur own. It's better

>

to punch them on the back side of the cardé 80 that you'can more
easily.identify your deck aftex it goes through{the card reader by

the top left corﬁér of the'two cards, since tha7top left corner is

r~

VI']. ¢ -

32

T A YR £ T T T T T o oo ot rtmm £

S S TR e

SLIST

@ e -

1_{‘

P

b

Back-of card.' Cut corner

=

/

Running Fortran Jobs on the IBM 1130 Computer

APPEum vn: ‘*._

Saection A of this appendix describea the control cards needed

4

for 1130 Fortran jobs without user supplied subprograms. Use of

FUNCTION and SUBROUTINE aubprograms fééuires additional control éards
which are described in Section B.

. The 1130 gomputer is ldeated in room MS 214. Normally the

-

machine will be on, but occasionally you may find it off. If the
" machina is off, then you must "power up" and perform a "cold‘start."

Section C tella you how to do this. If the machine is already on,
i
thﬁn refer to Sectlon D for instructions.

i Section E outlines some major diffarencaa between 1130 Fortran
? S
and WATFIV, o

-

Section F gives the error codes used with the 1130 Fortran

compiler.-

. VL. —_— :

\ ? - | i | | 32&;;

B e e S S =~ o e = P & e —

L4
Section A .
. .
Control Carde
In oxrder to run a Fortran job on tha IBM 1130 the following
- control card setup is used.
. \,...,_-._..
!, e e — .- - e e — e
T lllllllll 222222222233333333334444&&4&4&5555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
"y !/l JOB (or a “cold start" «card, if doing a cold start)
- // FOR ' :
*10C8 (CARD, TYPEWRITER)
*LIST SOURCE PROGRAM)
_ . }Fortran-soﬁ}ca deck . .
/] XEQ N T o 'Y
¢ : , .
}Data carde, 1f any
I Ope or two blank cérds

‘ »
" The // JOB card preparga the' computer for recelving and vunning
-+ a job. (It may be replaced by a "cold start" card whem the cold. start
. procedure is performed.) . _ <

The, // FOR card loads the Fortran compiler and initiates the com~
pila phase. . .

o

. > The *IOCS and *LIST SOURCE PROGRAM cards are control cards for

the Fortran compiler. The *I0CS card prepares the computer to recelve

input from the card reader (logical unit numbex 2) and to put output

on the typewriter/printer (logical unit pumber 1). The *LIST SOURCE
.PROGRAM card produces a listing of the program as it is compiled on

the typewriter/printer. If you choose not to have a listing, this card
.may be omitted, greatly speeding up the compile phase.

) on . . - Y

T " The // XEQ card initiates the execution phase.

: Since the card reader does not have an END OF FILE faature for

; reading the last card of the deck and ejecting it into the receiving

T hopper, one blank card insures that the last card of the deck will be .
read, but it will vemain inside the card reader. Two blank cards will 3
1nsura thac the last card will be ajected into the hopper. ' a

- - 8ee Section B for information on control eards for running jobs
. with SUBROUTINE or FUNCTION subprogramn

. LN 1

o . v 398 -

w AR T =y el i Bt = De S b e - ke S) v B e e T e R v b rem e

Section B

Using Subprograms

On the 1130, subprograms must be compiled and stordd on the disc
before’they cen be called and used in the-main.-program. For that rea-
son, FUNCTION and SUBROUTINE subprograms must be placed before the main
program in the program deck. Special control cards are also required.
Thé setup of control cards and source decks is shown below.

. 11111111112222222222333333333344444444445555555555666666666677777777778
123456789012345678901234567890123&5678901234567890 23456789012345678901.234567890
// JOB T
// FOR . ' ' !

*LIST .SOURCE PROGRAM o |

Subprogram source deck

"STORE WS UA Name \ | -
. // FOR ’ | :
" *T0OCS (CARD, TYPEWRITER)
*LIST SOURCE PROGRAM
. Main program source deck L N
PR
/1 XBQ - ,

Data ‘cards, if any

" One or two blank cards "

L4

The "I" on‘the .// JOB card is necessary sa that the atoring of
the subprograms on the disc will be temporary. If the "I" is omitted,
then the subprograms will be stored permanantly on the disc. ’

* The *STORE card moves the compiled program from the work storage ~
area (WS) of the disc to the user area (UA). The name of the subpro-
gram must be punched beginning in column 21, (This is the same name _— .
used in the FUNCTION or SUBROUTINE statement, of course, and is not ' .
-necesaarily “Name“ as shown on the card.) -

If you have more than.ona subprqgram, then, set up. contrel cards
‘fer‘each'subpgogram separately, as shown on the next page.

ot

Vii.3 . : B

329

AL UL

l\
kY
' // FOR N
‘ *LIST SOURCE \PROGRAM) '
.)
Subprogram source deck
/{ DUP
> *STORE WS UA Nane .
' Remember to place all subprograms before the main program. p
TUTTTTT T Rim TJobs in the usual way, using instructions In Section C or Sec~
tion D. ' '
L — .
For additional information ox@ control cards, see Section A,
e
%
4
LN
e
~ -
- ¢ '
‘ ~ . 7
3 o g “
L . . V\
- l “ VIIOz.'

330

e e e

MM T e S L T

Q\ﬁ\ S8ection C . ' : &j .
- _ Power ﬁp and Cold Start

This procedure is to be used only if the gomputer is off--that is, .

the main POWER switch Is in the UFF position snd the POWER ON Light

on the card reader 1s off. .
3 & ®
1. Power up. y
»é:mmfﬂémibﬁiﬁmééigéh is on the operator's console in the
-~ upper right—-hand corner. Position the switch to ON.
The POWER ON light on the card reader should now be
on. ‘
b. Open the door on the disc drive unit below and to the
° right of the. console. (The entirerfront of the cabinet
opens.) Find a switch labeled FILE. Move the switch
to ON. * .
c. Wait about 2 minutes, or until you hear a loud click.
The computer should be ready for the start-up procedure
then,
d. Check the green FILE READY light above and to the left
© of the console keyboard. It should be*on, If it isn't,
get help. ' S
2. Raady'tha card.reédeg. ot

p o

43

RS X

e

3.

a.

b.

Make sure that the card feed hopper on the card reader
is empty. ' '

Push and hold momentarily the NPRO button on the reader;
this will remove any cards that may be inside the reader.

Place the proper control cards with your program (see
Section A), and placa a "cold start™ card in place of
the // JOB card. (There should be a cold start card in
the box sitting on the card reader. If you are using a
// JOB T card, place the cold start card in front of it.)

-Puu your card deck into the card“feéd hopper, 9-edge

- away from you, face down, and push the. .START button on

Run

8.

the card reader. The green READY light on the card
reader should now be ou. o

th@ jOb . . '\ | 5 . . . X

Push the PROGRAM STOP button on the console.

il

N

Bl shm

) 5. Push the IMM STOP button on the console. 1

c. Push the RESET button on the console.
d. Push the PROGRAM LOAD button on the console.
e. Check the gresn RUN light on the console; it should

be on, and the computer should be oparating. If it
isn't, fiand help.

- f. At the conclusion of the run, clear the card reader.

Clear the feed hopper and press and hold momentarily
the NPRO button to sject the last two cards EE“C are
inside the reader.’ :

s

330

R

»p

} Section D

Running Jobs When the Computer is ON

Ihis procedure is to be used only if the computer lgagg. - that

is, the main POWER switch is in the ON position, the POWER ON light

on the card reader is om, and the FILE READY light on the console is

N : M mmee e e e e e s — —m e e —

e mmm n e _?;9_‘ e e

. . I,
-~ 1. Check the KB SELECT light on the left side of the consodle
keyboard. If the light is on, then you must do the follow-
~ ing before you can enter a job through the card reader:
' : a. Using the keyboard, starting at the left margin, type
//bJOB . R
"where "b" repragsents a blank.
b, Push the EOF (end of file) button on the keyboérd.
c. » Then type, starting Qt the left margin;; :
/ /bTEND |
wvhere "b" represents a blank. ‘
d. Push the EOF button on the keyboard again.
e, Check the KB SELECT light. It should be off. If not,
. “you probably didn't type the instructions correctly.
it Go back to step a and repeat the imstructions carefully.
' " 2. Ready the card reader. —~ R 1
. a. Be sure that the card feed hopper is empty. o

b. Push and hold momentarily the NPRO button on the cgrd
reader to remove any cards that may be left inside the
reader. : . oy o

Ed

. Place the propex control cards with your program deck
(see Section A). :

d. Place your cards into the card feed hopber, 9-edge away
from you, fgre down. _

&

. | o viny 329

Rt . |1 — ==y e - = o %.—;—an'.;;:ﬁ::a

Push START on the card reader.

Check the READY light on the reader.. It should be on.
If not, try again or ask for help.

the job,. : !
Push PROGRAM START on the console.

Check the green RUN light on' the console, It should be

on. If it is not, then either your control cards are in-

correct or else you need to use a "cold start" card. Re-

wove your cards frowm the feed hopper, and press and hold

momantarily the NPRO button to eject the cards that are

- inzlde thé reader. “Check your control cards. If they .

are correct, then go to Saction C, step 2c, and proceed
to the end of Section C. . '

At thé conclusion of the run, clear the card reader.
Clear the feed hopper and push and hold momentarily the

NPRO button to eject the last two cards that are inside
the card reader. .

VIL8 334 | I

a

Section B

1130 Fortran Compared to WATFIV ' '

This list ie far from exhaustive, being intended only to help

. you over some major hurdles.

\

. 1} Length of variable names. =

WATFIV: Maximum 6 characters.
1130: Maximum 5 characters.

2. Loglcal IF and logical data.

WATFIV: Loglcal capability avallable.
1130: No logical capability available.

3. Alphameric or character data (single precision).

WATFIV: Maximum of 4 characters assoclated with a variable
name. .
1130: Maximum of 4 characters associated with a xeal
variasble name; maximum of 2 characters assoclated with
an Integer variable name.

4., Input/output unit numbers. ’ A gg:

WATFIV: Line printer, 6; card reader, 5%
1130: Typewriter/printer, l; card reader 2.

]

 For compatibility'between WATFIV and 1130 Fortran, use of
variable I/0 unit numbers is especially convenient. The program

segments below 1llustrate this.

| 4
¢ RUN ON WATFIV - ¢ RUN ON 1130
INe5 1Ne2
TOUT=6 - . TOUTe1 G
READ (1IN, 4)A READ(IN, 4)A

WRITE(IOUT,5)A) - WRITE(IOUT,5)A

A single DATA initialization statement may be used for initlaliz-

\

ing both. unit numbers.

- € RUN ON WATFIV € RUN ON 1130

- DATA IN,I0UT/3,6/ ~ DATA IN,IO0UT/2,1/
READ(IN,4)A READ(IN,4)A
. uRITE(Ian:S)A WRITE(IOUT,5)A. ‘

5. " Carriage controls.
WATFIV: Blank, sero, +, 1, and /.) :
1130: No cartMage controls except /. Other carriage
controls, if present, are simply printed, as any
) ~ othetr character fields would be.

_For example, below are two program segments 1llustrating what

output is produced by each system. *
L C WATFIV C 1130
. WRITE(6,1) WRITE(1,1) .
* .~ 1 FORMAT (7HOQUTPUT) 1 FORMAT(7HOQUTPUT)
SENTRY . /! XEQ
QUTPUT

«Q .

Compatability between the two systems in the examples above can

be achlaved by'uaing a / to get double spacing, as shown belo&{

C WATFLV ¢ 1130
WRITE(6,1) WRITE(1,1)
1 FPRMAT(/7H QUTPUT) ‘ 1 FORMAT(/7H QUTPUT)
$ENTRY S . /] XEQ s | -

$UTPUT ‘ @UTPUT
Notice that the blank carriage control is "printed" on té% 1130.

o 6. Variable dimensions in subﬁrograms..

WATFLV: Variable dimensions are permitted and recommended,
11301 No variable dimensions are permitted. In general,
using the same dimension in the main program and
the subprogram is recommended.

. R | @
‘ VII.10
33¢

AV

7. Rounding of output. : .
WATFIV: Real aumbers are rouhded on output.
1130: Real numbers are not rounded, but are truncated on
output. '

The program segments below illustrate this.

C WATFLV ' C 1130
X=3.6789 X=3.6789
WRITE(6,1)X WRITE(1,1)X
-1 FORMAT(1H ,F4.2) 1 rf_om'rgu SF4.2)
SENTRY /] XEQ

3.68 | 3.67

-

R RO A

Section ¥

Error Codes

S Covinz 328

hiaial

The error-cbdes listed bolow are for the 1130

HDisk Monitor System, Version 2, the 1800
Multiprogranuming Executive Operating System
‘MPX), and the 1800 Timeo-Sharing Exocutive
Jperating Sy stem (TSX). Nost of tho exror codes
we the anme for oll threeo systems; whero they
itffor in meaning, a sepostrate delinition is supplicd
Zor the system that 1s dilferent from the others.

-In the table below, DM2 stands for the

s L - S P U,

3

1130 Disk Monltor System, MPX for the 1800
Multiprogramming Executive systom, and T8X

for the 1500 Time=Sharing Exccutlve systor.,
Some of thé errors are coused by errors in :ortrol
statemonts. For an explanation of these
statoments, vefer to the appropriate manual: for
DM2 -- Progronmaing and Operator's Guide, Foirm

C26-3717; for MPX -- Programmer's Guide, Form

C26-3720; for TSX- Concepta and Techniquos, Form
C26-3703.

“Error
Code

Cause of Ervor *

€01 | Non-numaeric character in statemont number,

- £02 1 More than five contin?gt@n cards, or continuation card out of

{ h‘qunncc.
03 | Syntax arror in CALL LINK or CALL EXIT statement, or, in
: TSR, CALL LINK or CALL EXIT in process program.

COo4 Undctcimimble. misspolied, or incorrectly formad statament.
€O0% 1 Statement out of sequence.
[

16 | Stutement followirg STOP, RETURN, CALL LINK, CALL
EXAT, GO TO, or IF statemunt daszs rot have 8 statement
aumber, or, In MPX or TSX, an MIPX or 3SX CALL statement

vaes not haze 2 statument numboar,

€07 | Nama longsr than five charactcrs or name not storting with
an alphabetic churacter. 'Y

€08 | incorrect or missing subscript within dimension information
{DIMENSION, COMIZON, REAL, or INTEGER).

€09 | Duplicata statement numb.r.,

Ci_O Syntox error In COLIMON statement.

G111 | Quplicate name In CONLMION statement,

€12 | Syntax error in FUNCTION or SUBROUTINE statement.

L

C14 | N2 oppeary twice s o paramater in SUBROUTINE or
FUNCTION stawemant,

€18 |OM2 ond TSX: *1OCS control statemant in a subprogram.,
€16 | Syntax ereor in DIMENSION statament. *
C17 { Subprogram namae in DIMENSION staternent.

€18 | Name dirensioned mace than once, or not ¢imensioned on
- | tirst sppearence of nama. '

G19 [Syntax arcor In REAL, INTEGER, or EXTERMAL statemant,

€20 | Subprogram namo in REAL or INTEGER statement, or, In .
DM2, 3 FUNCTION subprograra containing its own name in
an EXTERNAL statemant, .

4621 [Namein EXTERMAL that s also in e CO‘TMDN or
Ql.JE.\!SlON Matunent,

€13 | Parameter (dunvny aggument) appears in COMAION statement.

Y VR T

Error L
Code Cause of Error q
, | G22 IFIX or FLOAT in EXTERNAL statemant. \
23 | invalid real constant, ' :
C24 [nvalld integer constant. .
C25 | tMore than 15 dummy arguments, or duplicam dummy
argumant In statemant function argument fist.
€26 | Right parenthesis miss!r{g from o subscript expression.
€27 | Syntax erear in FORMAT statemant.
28 L FORMAT statement without statemant numbar.
€29 | DM2 and TSX: Ficld width specification greater than 1456
cotumnsg, MPX: Field wldth spocification greater than 163
columns,
€30 | In a FORMAT statement sp;clfy!ﬂg E or F-conversion, w
greater than 127, d greater than 31, or d giester thanw, v \\cra
W Is an unsigned Integer constant spocifying the tetal ticld’
length of the data, and d Is an unsigned intejer constant
specifying the numbar of decimal places to the right of the
dacimal point.
€31 | Subsceipt error in EQUIVALENCE statement,
C32 | Subscriptad varfable In o statemaont function.
€33 | Incorractly formad sub cript expression,
€34 | Undofined variable in subscript expresston,
o
¢35 | OM2: Number of subscripts In-a subscript expression, and-or
tha range of the subscript(s) doos not agree vith the dimension
information. MPX and TSX: Number of subscriptsin s
subscript oxpression does not agreo with the dimension
information,) .
€36 | tnvallg arithmetic statsment or varlable; or, in a FUNCTION
subprogram, the left sida of an arithmatis statement is o
. dummy argument, or, in DM2 and TSX, Is in COMIAON.
€37 | Syntax ercor In IF statement,
38 Invalid expression in IF statament. .
€39, Syntax error or involld simple argument In CALL statarens.
(€40 | Invard exprassian in CALL statement. R
’ . .
< .
/]
VIX.13. .

e e e A T T £ et :‘._JM;‘F"]‘LK“ et ey e g e

2

. ' o

_ferror : {Error .
Jode Cause of Error Code Cousg of Error

. - hdl _ .
— [€41] invalid expression to the left of an gquals sign in a stotoment . o . Y
funclion. | €83 | Ssatemant contains more than 16 ditferent subscript

exprosslons.

©42] Invalid expretsion 10 the right of an oquals agn in 2 statement

function. €84 | Statement too long to ba scannad, bacause of Compiler
' expansion of subscript expressions ar Compller addition

CA3 | tn an tF, GO 10, or DO statementy-a statument numbur Is genersted TeMporary storage locations.

missing, invalld, or lncorrucﬂy pdoced, or i3 the numbor of a : _

FORMAT statument. €66 " [Al vasiobles jn an EQUIVALENCE list are undefined,
CA4 | Syatax orror in READ, WRITE, or FIND statgment. €66°" | Voriable made gquivalent to an element of an arroy in sheh o .
Cab | *10CS record missing with a READ or WRITE stutement manfer 83 to causa the arrdy to extend beyond the origin of)

the COMMON arca. R !

{in DM2 and TEX mainline programs only}.

C67° | Two varlables or array elements In COMMON are equoted, or
tho ralotive locations of two variables or array olements are - .

Jassigned more than onge {directly or indirectly). | N I

CAG | FORMAT statemont numbiér missing or incorrect in a READ
or WRITE statament. ‘
1 LAT] Syntix error T Taput/aotput 1iss; or an invatid tist clemmgnt; or,

in a FUNCTION subprogram, the input list slement is a dummy €88 | Syntax error in sn EQUIVALENCE statement; or an illognl .
argument of is In COMMON. vorlable name In an EQUIVALENCE list. -t
€484 Syntax error In GO TO statement. C89 | Subprogram does not contaln a RETURN statement, or, ln

TSX, 8 TSX CALL stotement, or & mginline program contains

CA49 | tndex of a computed GO TO is missing, lnvalid ot not proccded
a RETURN statemont.

by axomma. : _
LI c80| " TRANSFER TRACE or "ARITHMETIC TRACE contro! €70] No DEFINE FILE statement In a mainling program that has
- Jrecord prasent, with no *1OCS control record in a mainline | disk READ, WRITE, or FIND statements. ‘ .
program. C71] Syntax eredr in DEFINE FILE statemont,
61| DO statenents are incorrectly nested. or the terminal statemgnt C72 | Duplicate DEFENE FiLE statement, more than 75 DEFINE
. of the associated DO statement s a GO TO, IF, RETURN,) | FILEs, or DEFHNE FILE statement in subprogram.
FORMAT,STOP, PAUSE, or DO statement, or, In MPX or ' i)
- ’ - . . o \v
YSX. an MPX or 16X CALL statemunt. €731 Syntax error In record number of disk READ, WRITE, or
FIND statamunt. "
. . - .
€52 | More than 25 nested DO statements. 74’1 OM2: Defined filo exceods disk storage size. MPX and TSX: -
GBI] Syntax error s DO statement.) INSKEL COMMON roferenced with two-word integer.
€54 { Initial value in DO statement is zero. ' ' O C76 | Syntax érror In DATA statement.
/ .) . '
€85 | 1n 8 FUNCTION subprogram the Index of DO is a dummy C76 | Names and gonstants in a DATA stotement not inaonetoona |+«
argument of is in COMMON . . correspondence. T
CB6 | Syntax error in BACKSPACE statement. : €77 | Mixed mode in DATA statement.
57/ Syntax error in REWIND statement. . C78 | Invalid Hollerith constant in 8 DATA statement. - . >
CSG Syntax ervor In END FILE statement, £79 | invalid hexadecimal specificotion in a DATA statement, '
: w
.69 Off2: Syntax error In STOP stotement. MPX and TSX: €80 | Variable in a DATA statement not used elsewhere in the™
. Syntux error in STOP statament or STOP statament in process program, or, in DM2, a dummy variable in DATA stotement. .
) program. - ' C81 | COMMON variable loadsd with a DATA specification,
€60} Syntax error in PAUSE statgnient. €82 | DATA statement too tong to compile, because of internal u
Q ‘Integor constant in $TOP or PALSE statement Is greater than | bufféring.
9989 .] €83] TSX: TSX CALL statement appoaring Illegatly.
C62 | Last executable statement before END statement is not a STOP, - - : .
GO TO, I1E, CALL LINK, CALL EXIT, or RETURN statemgnt, , :The datection of a code 85, 66, or 67 prror prevents any subsequent
" or, in MPX or TSX, an MPX or TSX CALL statement. dotection of any of these three orrors.
, . = $
. . N .
-
° \ . -
¢ . .
. -~ o -\
s L4
I3 ° Y B
VII.1l4 :

“,
é

1
Y
ll'
M
-
T
X
.

APPENDIX VIII

{' This appendix contains the '"User Terminal WATFIV" gection

o .
of the University Computer Center's System/360 User's Manuval..
/ - .

- .
.
. 5-
N ~
\ ’
-
LY
. t
. 2
~ -
. ‘
- o
a
SR
.
- -
N '
Q ‘
R . . >
.t
‘.
& “ s
.
Y
o . ']
: ¢ Y
‘l
. "R
s
4
!
!
o ~
“‘ - -t -
\
W n
\ .
\ Ry
Y BL
.
VIIL. 1
. v . '
“ L L. - 34.1‘ . . ‘\L,:’
. . ' : L]
° h

TS srmm s p s GRS e R T A T s T T S ST i e st i R
7 s = = e S, | T T e T . 3 - o

Ravised 8/9/71

USER TERMINAL WATFIV

é e o d
The prasent version of WATFTV which is being executed on the User's Terminal
in MS 010, has the followinp capabllities and requirements:

) (a) Compille time {s unlimited. '
(b) Execution time is limited to a'maximum of 30 seconds, but can be
cut down by use of the 'TIME' parameter on the $JOB card.
(c) [Ixecutionr output pages 1ls limited to 20.
(d) Core size is limited only by the amount of free low spead core
avallable at any given time. This informatian can be obtalned »
from the users display station. ,

‘Features -
&
NAMELIST!
Direct~Access I/Ol
CHARACTER variables
Debugg ing:
-ful’ sentence diagnostic messgages instead of ¢odes. , .
-undefined array elements identified explicitly rather than
by array hame only.
¥ -more explicit error diagnostics. . .
~other aids for localizing errors. ' .
5. Compatibilicty with IBM's G, H Fortfan compllers is increased:
~computed GO TQ's work as specified in C28-6515 when GO TO
- ~index 1is outside the allowable range. -
~array elements as arguments may be passed, to subprogram)
parameters which are array names (see C28%6515 for rules).
-~variable dimensions work as specified by C28-6515. I
~character sget conventions are compatible with G and H, l.e., :
- _ treatment of $, &, ', Q. N
W . ~treatment of ENTRY points in function subprograma is as :
) specified in C28-6515, : e,
-gtatement ordaering conventions aré followed, specification,
statement function definitions, executable statements, i
~-real constants of the form 1E2, 1i.e., without explicit decimal e
poirnt, are now recognized. - ' .
6. A few more language extensions, ¢.g., multiple statements per caxd,
are implemented

B Do
L] L] L)

' .
LY

W{TFIV Control Cards

Three control cards - $JOB, SENTRY, and $IBSYS -~ are required to run a program o
under WATFIV, The order of the cards {s .shown below which defines a WATFIV job.

= $J0B ~ project number,social sacurity. number,parameters nane ;
FORTRAN, program conaisting of a main program and any number of ' o .
subprograms. , . ..
SENTRY o Co S
?any data required by the program . . T .
$IB&YS - . . ‘,

1gee 1BM System/BﬁO Fortran IV Lgnguage. Form 028~6515 for rules. | , ‘

-

: - . - VIIL.2 342 IR D

Revised ﬁj9!71

e)

The control field $JOB is pupched in columns 1 to 4 of the card, SENTRY and

“ $IBSYS 1in columns 1 to 6; column 5 and 7, respectidely, must be blank. Accounting

lnformation and job parameters appear on the remalnder of the $JOB card., Columns
8 to 80 of the $ENTRY and $IBSYS cards are ignored. The SENTRY card ie required
to initlate executlon of the compiled program even if no data is vequired.

WATFIV JOB Card

General Form:
.) .

$J0B XXXXX, S§5~5$-SSSS, T IME~t, PAcEs«p , LINES=k , REGION=nK,

§LIST OLIBLIST(,WaRN { J. ... { -
] NOLIS;‘} %IBLIST{ NOWARN , NOSUBCHX) name c

XXXXX ~ a valid project number for the run

S§5-585-8885 ~ your Social Security number

Lt - an integer numbar representing the maximum number of seconds tq allow for
execution of the program Default is TIME=S.

p m_an integer number representing the maximuh number of pages to allow the
program to produce at execution time. Default is PAGES=20.
k - an integer number representing the number of lines printed per page. (The
‘ compiler uges. 'k' to provide automatic page skipping at both compile and
execution time.) Default is LINESEéO, : ~ .

n -~ an ‘integer number representing the amount of working atorage requeated for
the job. Default is REGION32OK -

-
©

026 '
02-} Chooge 026 if the source program is punched on a model 026 (BCD) kaypunch
hoose 029 if punched on a model 029 (EBCDIC) keypunch.

CHECK : -~
NOCHEC‘} ~ The compiler will check, at exetution time, for attempted. uses of
C REE variables which have not been agsigned 4 value (undefined variables)
1f CHECK is..selected. . Use of NOCHECK suppresses the check, resulting in a
somewhat reduced execution time. Also, somewhat less object code is produced.
RUN=FREE s the.same as CHECK, but the compiler will initiate execution of the
program aven if it contains serious source errors. If an executable Statement
-which cbntained a gource errar is subsequently ancouncered axecutioh is
terminated.

<.

LIST i -
OLISé} -~ Choose LIST 1f the compiler iz to produce a sourcc linting of the
gram; NOLIST aupprasaga the listing, .,)

¢

o -. : | | VIIL3 - 343

bl abieal bl B B e - & e i L Lann I e U SN et L e et e+ IR, L0 LT e mt. ST <2 M h e,

)

£

TR TAEATT R At s BT R T et w e E 80 A R = = = = e I L LT L TR e b —w
.

Revised 8/9/71

- (NOLIBLIST . i '
) 1&IBLIST - Choose LIBLIST if the compiler is to produce a source listing

of the subprograms automatically retrleved from a library; NOLIBLIST
. suppresses the listing of lilbrary routines. Nofe ‘that the LIST/NOLIST
and LIBLIST/NOLIBLIST paramecers are independent.

WARN

NOWARNf - Choose NOWARN if the compiler is to suppress all dlagnostics of a
severity less than a fatal error. (Ervor severities are discussed in the
section on Diagnostics.) Choose WARN 1f the diagnostﬁgs are to appear in

B the source listing.

: “““‘“'{ﬁOSUBCHK'“b Allows subscripts to take on any form as long as they do not .
exceed the space of the actual array. This will allow programs like the
following to“run. The SSP programs can be run in this manuner.

L

REAL A(10)

»

CALL ANY(A)

SUBROUTINE ANY¥B)
REAL B(l) - ' .
© DO 100 I=1,10 .
160 B(I)=D.
RETURN
END

\

NOTES :
~

'

1. The $JOB: card should be bunched on an orange card. The project number

can begin in any column after column 5. The first blank encountered
" thereafter will terminate the card sc¢an. One or more blanks mus®
separate the user s name from the WATFIV parameters.

g

.2. , The pa;ameters may be punched in ahy order, e.8.
| $JOB XXXXX,885~85-8585,KP=026,TIME=10,NOLIST ,PAGES=15 name

Parameters may extend to column 80,

3. . Default values (underlined) will be assumed for all parametars that |
are omitted from the 3JOB Card. - .

\

4, 1f a paramé%er is miapunched, the scan for any remaining parameters ls
stopped, and default valueg will be assumed, e.g., :

$JOB XXXXX,S§55~55~5888, PAGES=10,NOWARN, TAME=20,KP=026, RUN*NOCHECK name

.;(:,! ,
AN
o E

z‘;y@
"‘Y’?ﬁﬁi\\“

spelling of TIME, _
1 VIILA 344

L4

!
i

!

o

! but defaults are assumed for all other parametexs because of the mis~
|

|

The PAGES=10 and NOWARN parameters ste racognized and 'uSed by the compiler,u N

L4

Revised 8/9[2}

Y
S

5. If any parameter is specified more than cé17 the rightmost value
is used, a.g.,

\SJOB XXXXX,855-88-8555,KP=026,TIME«1%5 ,LTBLIST,KP=029 name
Tha KP=029 parameter is recognized and ugsed by the éompiler.

Source Code Libraries for WATFIV

I .
The capability for WATFIV to use a 'source code" library for "unresolved"
references is available on the terminal version of WATFIV, This means that
ugers can put source code subroutines or function subprograms into thie library

- and "CALL" them from WATFIV. It is optional to either print or not print this

source code by using the LIBLIST/NOLIBLIST parameters on the $JOB Card. Should
any user desire to put often used routines into this library and "CALL" them, he
should contact <he UCC librardan. A savings will result if FIVPAK comnressed
decks are stored rather than "one statement per card" Fortran gource decks. See
the subsection of FIVPAK and UNPACK.

Source Statement Compress and Unpack Routines (FIVPAK, UNPACK) .

Purpose:

FIMPAK comp:eases "one statement per card" FORTRAN!source decks into
"multl-statements per card" decks useable in WATFIV. (UNPACK reverses the
. process) . -
This form Of source input is efficient if programs are to be stored in
gsource form\in data sets on disks, since the results ares
(a) fad er compile-tim !

(b) more cards in the sime amount of disk_space.li -~
Method : . ' | | \

Blanks are removed from all Fortran statements (inciuding literal data using the

H format code), except where they are imbedded with apostrophies. Therefore, a .

source deck written with the H format code should not be; compreaued. Comment cards

are reproduced £8 read in.) ; .
DATA A,B/2H *,' %'/ |

X=5.0 _ . ’

3% GO T0 (3,8),) |

|
is compressed into, :

, B © DATAA,B/2H¥,' *'/;X=5.0;36:G0T0(3,8),1 1 ° “—

" The cards produced are sequence-numbered in increments of 10. Jﬂ*~\v~'

N
s - -

/

Ho% to Uge!
i

CALL FIVPAKINREAD, NPUNCH), or CALL UNPACK(NREAD NPrNcu)

- where NREAD = unit number for input data

Aruitoxt provided by Eic:

NPUNCH = unit number for output data |
Both programs must be called from a program run: under WATFIV .

r

1. .ﬁppréximiie saving of 60% (typical example, 281 cards compré%aed to 111).

2. FIVPAK and UNPACK reside in WATFIV's source lihrary WATFLVGMTLIB,
ERIC yrary WATEIV G

VILL.5 Y

Ravised 8/9/71 .

since they use (HARACTER variables; for example, to read cards from the reader
afidl punch a new declk. &
//JOBNAME JOB (XXXXX,S55~55-585SS,time), 'user-name'’
// EXEC WATF1V
[/ /WATFIV.SYSPUNCH DD SYSOUT=B - .
/ /WATFIV.SYSIN DD * |
$JOB NOWARN narme "
CALL FIVPAK(S,7); STOP; END

SENTRY |
' one-statement-per~card deck to be compréssed
$1BSYS
// /.
NOTE: (‘ . . e

N More than cne program deck can be compréssed using FIVPAK by placing a
card with an asterisk (*) in column 1 between each complete deck. UNPACK does
not requilre such a "separator' card. A 360 Special Rup Submittal card indicating

punched output must be included with the above job. 5

ﬁ‘

Control Cards to Edit Souice Listings

Four new cohtrol cards have been aadéd to WATFIV to be uged for controlling
the printing of compile-time listings. These are S$PRINTON, SPRINTOFF, SSPACE

‘and $EJECT. ~

When a $PRINTOFF card is placed in the source deck, the listing will
terminate at that point, The SPRINTOFF card itself is not printed.

A $PRINTON card will allow the listing to be restarted if a previous
$PRINTOFF card was used or a NOLIST option was punched on the job card. The
S$PRINTON card is printed.

The' $EJECT and $SPACE cards cause the printer to skip to a new page dnd a
new line 1@apectively

A source deck using these cards might be as follows:

$JOB XXXXX,8585-55~-S85S,NOLIST nama
cards not to be listed

SPRINTON ‘
cards to be listed '

SEJECT ~ °NP ' ;
subprograms

$SPACE

_ "END -

o~ . SENTRY] | :

data cards . N

siBSYS | 314

= eI A e b s o Paser sl e = =t e et T L e, = A e ar T i

xevised 8/9/71

Lo, _
These contrsl :ards can be used to advantage when a large program iz being

‘tested. By suppressing print in areas where code has not been changed, the user
can save on machine >rintout time.and thus have the job run more economically.
Also, the SEJECT and $SPACE cards can be used for the final "preduction run" to
make the output look more presentable.

rxecuting WATFIV {n the 0S Job Stream

When 'EXECuting WATFIV the following procedurelehould be followed:

1. Set up the deck as shown below and submit inm MS 010.

2. The 0S JOB (// JOB) card must be punched omn an:orange ocard, but the
Cme - WATFIV $JO3 card should not be on an orange card. Denot include the
project nunber or Soclal Security number on the $JOB card.

3. A region o 110K plus the amount of working storage for the WATFIV job
{s required. For instance, if the usar needs 40K for his job, th.n 150K
would be snecified in the region parameter. CLASS=B 1s required for
raglon sizz2s greater than 127K. An example follows:

»

//JOBNAME JOB (XXXXX, §$5~55~5855,2), 'user ~name' ,REGION=150K, CLASS*B

/! EXEC WATFIV . .

/ JWATEXVL.SYSIN DD *

$JOB TIME=20,K’=026,NOWARN,NGSUBCHK name

WATF IV source deck

SENTRY : .
¢ ' 1nput data

$IBSYS . ' -
/1 |

Language Extensions

WATFIV attempts to support the language describped in the IBM publication
"IBM System/360 FORTWN IV Language", form €28-6515, subject to the subsection .
on "RESTRICTIONS'". 'n addition, WATFIV supports a number of extensions to the
language, which are desc¢ribed below. Uses of the language extensions, except
for 1, 2, 12, and 13 are flagged with *EXTENSIONS* messages. These mean that
the program 1s accepcable to WATFIV but will not likely compile on other compilers.
The messages can be suppressed by use of the NOWARN parameter on the $JOB card.

1. Format~free I/0. This allows the programmer to do 1/0 without reference
" to & FORMAT statement. For example, the statement PRINT, A,B will cause
the values of A and B to be printed with a standard format. Format~free
1/0 statements may have one of the following forma: .

READ, list
PRINT, list
READ (unit,*, END=m, , ERR=m,) list

WRITE(unit,*) list

VIiL.7 .

e e s e . (S, e e S - e

b ‘ | Revised 8/9/71 i

1

. The 1/0 for the tirst two forms is done off the standard reader and printer
“units, L.e., 5 and 6 respectively. The asterisks in the last twe forms imply format-
free 1/0, and 'unit" may be a constant or variable unit number. The END and ERR
raturnsg are optional, as with the conventional READ statement.

Note that the two statements

READ, 11st , | .
READ(5,*)1{st"

are equlvalent, as are - ' .

PRINT, 'iat
WRITE(6,*)1list .

i

~-Some examples follow:

READ,A,B, (X(I),I=1,N)
PRINT, (J ,2(J) ,J=N,K,L),1,P

99 WRITE(6,*) 'DEBUG OUTPUT',99,X,Y,Z+3.5 &
READ(I,*,END=27) (X(J),J=1,N) '

Free input data ltems may be punched one per card, or many per card; in the

" latter case, the data items must ‘be separated by a comma and/or one or more blanks.
The first data item n a card need-not start in column 1. A data item may not be
continued across two cardsa i.e., the end of s card acts as a delimiter.

Succesgive cards are read until etrlough items have been found to satisfy the
" requirements of the 'list’part, of the statement: -Any items remailning on the. last
card read for a particular READ statement will be igriored gince the next READ
astatement executed will cause a new card to be read.

L

It is perfectly'valid to use format~free READBtajemants_and conventional
READ statements in the same program. »

-

The forms of data items which may be used for the various types of FORTRAN
variables are:

Integer - sign(d or unaigned integer constant "
Real” - signed. or unsigned real ‘constant in F,E or D forms
Complex ~ 2 real numbers enclosed ;n parentheses and separated .by a comma,
Som, " : Q. SOQ (1 2 —3 8) P .
Logical ~ a string of characters containing at least one T or F. The firse -
. T or F encountered determines the logical value,

Character ~ a string of characters enclosed by quotes. If a quote is requived
as input, two successive quotes should be punched. .

S PR VL S

The type of a data ltem must match nhe'type of the variable it is being read into.

A duplication factor may be given to avoild punching the same nonstant nany times.
For example, if we have

DIMENSION . A(25)
READ, A ' . |

-

. %
the data for the READ atatement could be punched as ¥
» 15%0,,10%-3.8 . :
‘IC H : ' t) 31'9

o ﬂf' Jwr_j_vxxz.e"

Examplast

ey Forr it el = S TN S g e s . - F—_— -

Revised 8/9/71

(1) source atatemaﬁt READ,X,1,Y,J
typical data - 2.5 3,-7.9,~6]

(44) source statements COMPLEX 2(5)

READ, (Z(X),I1,3)

typical data (5.2,~-16.0) 2%(0.,.58=3)
(111) source statements LOGICAL L1,L2,L3
. READ,L],L2,L3 .
typical data , T .FALSE. , CAT"
(1v) source statements CHARACTER A¥]. B*3
READ, A, B : i
e . o prapegr ”w‘_,”"_j . : -

For free output data items the compiler supplies formatting for list items output

by format-free statements. Line overflow is automatically acsounted for, i.e., several
records may result from one output statement.

The formats used are:

Integer ~Y12
Real¥4 ~-E16.7
Real*8 -D28.16

- Complex*8 - '(" E16.7 ',' El16.7 *)°
CompLex*16 ~ '(' D28.16 ',* D28.16 ")
Logical = - .. L8

_ Character*n h*aAn

.

2. _CHARACTER Variable. This is a new type of variable which allows the manipulation

of data in the form of character strings. A simple example of the use of a
CHARACTER variable follows: '

CHARACTER A7

=

'l L
A="FINALLY . "

.

The standard and optional length specifications which determine the
nunber of charaoters that are reserved for each character variable are:

/ Variable Type - Standard | Optional . ‘
CHARACTER =~ 1 ' _1<n<255
- ' ’ N
~
* .
VIIL.9 | 319

T —t . TR T T e = — e b

e e 1 A e T et S 40 e e e P TR = T

Revised 8/9/71
? o va

)

A programmer m.ay declare a variable to be of the character type by use of the:

(1) 1IMPLICIT specification statement.
(11) Form of the explicit specification statement: CHARACTER

IMPLICIT Statement:

The type CHARACTER is permitted in the IMPLICIT statement with a specified
length. If length is omitted, the standard length of l.ls aggumed .

Example:
- IMPLICIT CHARACTER*80 (A-D),CHARACTER ($,Z)
Explanation: - - ‘

All variables beginning with the charactersA through D are decla ~d as
CHARACTER type, each variable or array element 80 characters in size. All va iables
beginning with the characters $ and 7 are declared as CHARACTER. Since no length
gpecification was explicitly given, 1 character (the standard length for CHARACTER)
is allocited for each .wariable.

CHARACTER Statement: 0

GENERAL FORM

N RN * *®
CHARACTER gﬁgﬁ31(&1)/§1/,2f52(gz)/§2/,...,g_gn(gn)ﬁgnl

Where: %ﬁ,*gﬁ,*gg,...,*gn are optional. Each s represents one
of the permissible length specifications.
a,b,...,z represent variable or array names ‘
(51),(k2),...,(5“) are dptional. Each k is composed of
of 1 through 7 unsigned integer constants separated
by commas, representing the maximum value of each
subscript in the array. Each k may be, an unsigned ' A
integer variable only when the CHARACTER statement
in which it appears is in a subprogram. ,
'/51/,/§Q/ ...,/x / are optional and represent inicial data

values.

~

The formation nec ary to allocate storage for arrays (dimension
information) may be inclyded within the statement., However, if this information
does not appear in a& CHARACTER statement, it must appear in a DIMENSION or COMMON
statement:, HARA&L*\“ : . ¢

e

Initial data values may be assigned to varilables or arrays by use of
/x /* whare X, is a constant or list of constants’ ae??thad by commas.

_VI}I.lO

— - R A LR S n - . <y o s,
3 T e = PR - e 1 e

Ravised 8/9/71

This set of consiants may be in the form "r#* constant', where r 1s an unsigned
integer, called the repeat constant. The Initial data values may only be literal
conatants and must be the same length as or shorter than the corrasponding variabla
or array element. Initlal data values will be truncated from the right and diagnosed
1f too long, and they will be padded with blanks on the right if too short (see

"Example 2" below).

An initially detfined variable or a variable of an array may not be in . la
comnon. In a labeled vommon block Lhey may be Initially definad only in a BLOCK

DATA subprogram. e e -

The CHARACTER st.atement overrides the IMPLICIT statement. If the length
gpecification 18 omitted (l.e., *8), the standaxd length of 1 18 assumed. If an
array is used in a subprogram and is unot in a COMMON, the size of this array wmay be

-specified implicitly bv an integer variable of length 4 which can appear explicitly
in the SUBROUTINE statement or implicitly in COMMDON (adjustable dimenslons).

Example 1:

»

CHARACTER*80 CARDS (10), LINES*132(56,2),TCARD

\Exqiiyation: . b

This statement declares that the variable TCARD and the arrays named CARDS
and LINES are of type CHARACTER. In addition, it declares the size of the array
CARDS to be 10 and array LINES to be 112 (2 groups of 56 each). Each element of
the array LINES is assigned 132 characters for atotal of 14,784 (112 times 132) forx

the array. . ,

-

Each element of the array CARDS and the variable TCARD 1s assigned 80 characters
(the length associated with the type). The array CARDS is'assigngd a total of 800

characters.

Example 2: .
CHARACTER X*3(4)/'ABC','DEFG',"H1', "JKL"/

)

-

Explanation:

This statement declares that the array of four eleménts of three characters
@ach named X has initial values: :

X(1) ABC

” X(2) DEF
5 X(3) HI -

X(4) JKL

The statement Y& incorrectly written, and the value specified for X(2) has
been alterad by truncation.

« Multiple Asaignment Stataments.

L]

Statements of the form

R

/'_

vV, =V, ® ,,, ®» Vv ® axpression
1 2 n

bbb Tl e b ddid st B - = v < P - =
1y U . T e S b R T R S RS e A e T e T e o+

Revigsed 8/9/71
QE f
" ard alloved, where v , » etc,, reprasant varlable names or arxay elements. The
effect 1la that of the sagquence of statements

vn = gxpresaion

v WMoV ,
e .

_ E.g., A= B(5) =C = 1.5

+ Expressions in Output Lists.
_Expressions may be placed in output statements, e.g.,
WRITE(6,2) SIN(X)**2,A%X+(B~C)/2)

The expression may not, however, start with a left parenthesis becau “he
compiler udes this as a signal that an implied DO follows in the list. For example:

PRINT, (A+B)/2 /
would result in an erroy message. However, the equivalent

PRINT, +{(A+B)/2

is acceptable, -
Note that CHARACTER constants are forms of e%§reasiona acceptable ln output
statements, e.g., . '

) PRINT, '"VALUE OF X="', X
« Initializing of Biank Common. ‘
Variables in blank common may be initialized in DATA or type statements, e.g.,

COMMON X
YNTEGER X/3/

. Ipitializiqg Common Blocks. ' ’ ,
Common blocks may be initialized in other than BLOCK DATA subprograma.
« Implied DO's in DATA Statements
Implied DO's are allowed in DATA statements, i.e., a statement of the form
© DATA (C(I), 1=1,5,2)/3%.25/

18 valid. ‘fomf
In fact,

DATA (A(I), I=L,M,N)/ constant list/

» .
is scceptable if L,M,N have been previously initializad and at leasc[;N%]+ 1 conscants
are present in the constant liste o \

+ Subscripts in St§$ament Function Definitions. i S
"~ Subscripts may be used on the right~hand aide of statement function definitions,
BeBer T p(X) w ACI)4X + B(I)
* Subscripts may be logical, complex, ox character values.

The reéﬁ part of a complex value is converted to an integer, and this value .

: VIII.12 352 ‘ *

Revised 8/9/71

is usged for 1ndax1ng,into the array. For example, if Z is complex, and A ie an
array, then A(Z) 1s equivalent to A(INT(REAL(Z))).

Transfer statements a8 object of a DO.

A logical IF statement used as the last statement (object) of a DO loop may
cortain a GOTO of any foiin, a PAUSE, STOP, RETURN, or arithmetic IF statement. E.g..

DO 25 I=1,N
25 IF (X.EQ.A(1)) RETURN
Exceeding the continuvation card limit.

A statement may be continued on 10 continuation cards.

“mMultiple statements per card.

WATFIV allows the programmer to punch more than one statement ou a eiugle card.
This is particularly suitable for programs that are to be etored on librarfes since
less direct~ascess storage sgpace is required, and fewar input operatioua air. necessary
to retrleve a gubprogram.

The rules for this feature are: v

-(a) Only kolumns7 72 may be used for statements.

(b) A senticolon 18 used to indicate the #nd of a statement.

(c) The normal continuation card rules are used for a statement which is to
be continued beyond column 72. '

(d) Statement numbers appear in columns 1-5, as usual, or following a
semicolon and followed by a colon. They may not be split onto a
a continuation card.

(e) Comment cards and FORMAT statements must be punched in the counventional
nanney . _ "

Column 6 e

E.g., 25 A=B;C=D;39:PRINT, A,B, - A
. * C,D;X=A+B*C+D
PRINT, X; 99: STOP;END

This could be punched in the conventlonal mannexr as

25 A=B
CwD
39 PRINT,A,B,C,D
X=A+BACHD
- PRINT,X:
99 sTOP
END

Comments on FORTRAN statements. .
The compiler terminates the left-to-right scan of a particular card whepu

2 ¥ (pronounced 'zigamorph', and punched as a 12~11-0-7-8-9 multi-punch) is .
| %

encountered. Effectively, this means comme may follow a PORTRAN statement ~
on, éhe same card if a f is used to terminfte the FORTRAN statement.
; }

Note ‘that a ¥ ie unprintable, as well as being almOsc unpunchable.

{

- Eoie, XeA+SIN(CY) EVALUATE X

The DUMPLIST and ON ERROR GO TO ntatements have been implemented in WATFIV as
Debugging aids.

. VIIL,13 353

L e T £ Y - - - SOV oy OO EE PSSPV IO

e s i e T s e %

-Reviged 8/9/71
i VIII.14
: hl
Regtrictions
The user of WAIFIV should take note of the forlowing restrictions in
language and facilittes provided by the compiler.

1. The name of a common block must be unique, i.e., it may not also be used
as the name of a variable, array, or statement function. This is in

violation of C28-65]5.
2. The concept ot the extended range of a DO loop defined in C28-6515 is

not supported.

3. The service subprograms DUMP and PDUMP defined in Appendix C of
C28-6515 are not supported.

4. The Debug Factlity described in Appendix E of C28-6515 1is not supported.

5. There are no facllgties in WATFIV which corresponds to the FORTRAN
G/H options MAP, EDIT, XREF, OPT=, DECK, LOAD, NAME=, LIST.

6. The Extended Frror Message facility ia not. aupported _

7. No overlay facility is available; no 'module map' is produced

8 The number of continuatlion cards, as well as the use of operator
messages with STOP and PAUSE statements, are installation options.

9. No more than 255 DO statements are allowed in a program segment.

10. FORMAT(is a reserved character sequence when used as the first 7
characters of a sratement. 1t is the onlv reserved character sequence.
For example,

FORMAT (1) = 3.5 ' .

will result in FORMAT error messages, whereas
X=FORMAT (1)

e legal, assuming FORMAT to be an array or finction name.
11. WATFIV is a 'one-pass' compiler, and requires several restrictions on

statement ordering. These are:
(a) Specitication statements referring to variables used in NAMELIST

or DEFINE FILE statements must preceed the NAMELIST or DEFINE FILE
statenents, & h

(b). COMMON or EQUIVALENCE statements referring to variables used in DATA
or initializing tyﬁaqstatementa wust preceed the DATA or initializing
type statements.

{

*

. Fogo, REAL 1/5.2/
COMMON [
will produce error messages, whereas,
COMMON 1 |
REAL 1/5.2/ ‘ 0
is acceptable.
SR (c) A varlable may appear in an EQUIVALENCE statement and then in a

subsequent explicit type statement only if the type statement docs
not declare the length of the variable to be different than could

. be assumed for it, based on the filrst letter of the variable name,
at the time of its appearance in the EQUIVALENCE statement.

For example, ' | C o o
EQUIVALENCE (A,B) , ¢
REAL*8 B
will produce an error message, whereag
REAL*8 B
EQUIVALENCE (A,B)
will not. Note that ‘ N
EQUIVALENCE (A,B) '
INTEGER B . .
. is acceptable since the .length of B is?LGEichanged by the type N

gtatement, . e

Rav ised 8/9/7) :
\ PRI S

i " e
- ' Y B L
R e Tee Wy
hY . ' »)\ T‘ " ’ . .
. "\ Ay)
S T S
. b .

Incompatibilitiaa with WATFOR

The most :likely causeﬂbf difficulty is the use of arrays as.subprogram
arguments; this will be discussed last. Let's take cara of the wasy ones first.

1. WATFOR does not support the NAMELIST Direct Acce&s 1/0, CHARACTER _ o
variable language features.

2. WATFOR does not support the LTST/NOLI?T LIBLIST/NOLIBLIST,

WARN/NOWARN job options.

3. WATFIV issues warnings if the proper ordering to;statements is not
followad. The proper order is specification stateménts before statement
function definitions before executable statements.

4. With WATFIV, DO-loops may be nested to any depth. o

5. A half-word integer variable may not be used as a unit number in an
1/0 statement with WATFIV. : : B

6. WATFOR does not accept source statements in compreased form, i1.¥., -
more than one statement per card. e

7. If the index of a computed GOTO is negative or zerq control trar ‘fevs
to the next executable statement with WATFIV; this follows the
specifications of C28-6515. Under WATFOR, a termipnating error massage
is gilven. .

8. WATFOR gives fpecial treatment to the $ In IMPLICIT statements. WATFIV
assumes it follows Z in alphabetical order; this is the convention of
C28-6515.

9. IXf a function subprogram has addi™onal entry points, WATFOK does not
'equivalence' the variables which are the names of the function and
its entry points. WATFIV does this, as prescribed by C28-6515.

10. The conventions, used by WATFIV, for intermixing EBCDIC and BCDIC
characters in source programs are slightly different than those used
by WATFOR. .
(a) WATFIV does not allow intermixing of the two (uote marks in a program.
(b) If KP=26 1s specified, WATFIV uses '$' to denote a statement number
\ argument ; WATFOR uses a 12-8-6 multipunch (EBCDIC*+') for this.
11. WATFIV treats arguments passed to subprogram psrameters which are arrays
.differently than does WATFOR.
(a) WATFIV allows the actuyal argument to be anarray element or a simple
variable.
(b) WATFIV uses the dimensions declared for the dummy array in the
called -subprogram. . This ensures compatibility with FORTRAN G/H,
and object time.dimensions work as specified by C28~6515.

Under WATFOR, the dimensions for a dummy array are ignored at execution
time. When an arrvay 1is passed from subprogram to subprogram, the dimensicns
that are declared for it in the program segment in which it 1s actually
allocateég;&gxage are Ilmplicitly passed as well. These dimenslons are then

used for script calculations.
Poin¥™ (b) "implies that the results will be different under WATFOR

and WATFIV 1if the dimensions of the dummy array differ from those of the
actual array passed.

Incompatibilities with FORTRAN's G/H

Note that the differences listed below do not include the language extensions
and restrictions. Nor do they include differences which arise eithexr because
object programs compiled under G/H are freely allowed to violate the language rules
defined by C28-6515 (e.g., passing an argument of type INTEGER to the SQRT subroutine),
or. becauaa the G/H compilers accept syntax not defined in C28-6515, e.g.,

N : WRITE(6, 2) (ACT), AC2))

. | 355 .

St - = <) mgj,:xﬂ -

°

Révised 8/9/71

. The major cayses of differences between WATFIV and FORTRAN's G/H are likely to
-v& tha trsamment of FORTRAN-supplied functions and number conversionas.

1.
N\

2.

3.

10.

WATFIV prbvides uxec@tionﬂtima page skipping, controlled by the LINES=
job-parameter. .

- WATFIV allows any number of contiguous comments cards; comments cards may

precede a continuation card.
WATFIV uses ouly the high-order byte of a-logical quantity in logical _
operations. For example, {f A and B are of type LOGICAL *4, execution of

&

the Btatemhn(_ .

3

A - B , :" -

6?; only (ne byte (o'he moved.

DO-1&ops may be nested to any depth in WATFIV,

- WATFYV supports both EBCDIC and BCDIC '+' as a carriage control character.
WATF
ment
thNE
list

congiders the program to be in error if 1t executes a RETURNI state-
in which the value of 'i' is zero, negative, undefined, or greater
the number of statement unumber arpguments which apbenrod in the aoyument
of the CALL statement which invoked the quhpxngtam from which the

return is heiny made ¢

WATFIVapdnt e no measape equivalent to the THC2101 (Mold PSW is ...”))
megsage when interrunts occur. .

With WATFIV A use of T format which does a 'backward' tab fn an output !
buffer does rot cause existing chdrA(tot% iuﬁphe buffer to be blanked out.

For example, congider the statements:

7

Ko 9
Je 1
WRITE (6,7)K,J '
FORMAT (' $$%.00',T3,12,T6,12)

With WATFIV, the line appears as: ‘ €

$$9.01

With G/H, {t appear as:

$9. 1 %

. G :
Actually, this {s a consequence of the fact that WATFIV's formatting routdins

assume the huffet to be blanked before any filling of it occurs, i.e., only

aignificant characters are moved into the buffer. _

REAL*4 values are printed with a maximum of 7 significant digits. If the
output format specification calls for more, i.e., E20.10, zeroes are supplied
on the right. . .

WATFIV treats FORTRAN-supplied functions differently than G/H as followsa:

(a)
(b)
(c)

The function's type must be explicitly declared if it is different than
can be agsumed from the implicit rules.™ _
WATFTV makes no distinction between 'in-line' and ’out—of-line' func;i;ggﬂ

all functions are out=-of-line. .
WATFIV eveluates all func®ions that xequize complicated approximati@
formulae in double precision, i.e., SARE

SQRT(X)
is calculated as, essentially,
SNGL (DSQRT(DBLE(X))) .

b

VILI.16

TAT A Rt L O R PR TR TSy T P STET, PETELA L g TR PR ST ITE RN ke b e e . S — <.
A S KR R P T A, Ly e L e ke e s ey eh ae 4 Gt s e 5 - N
; — B T T

" Revised 8/9/71

11, VWATFIV handles FORMAT statements differently than G and H as follows:
(a) Commas are not required between format codes in WATFIV.
(b) WATFIV allows more than the maximum number of continuation cards fox
. FORMAT statements.
(c) WATFIV does not allow group or field counts to be zero.
12. Execution-time ‘data carde read on the standard card vreader -unit by WATFIV-
o complled programs may not contain a $ in column 1.
“13. With WATFIV a particular labeled -COMMON block can be initialized in mor
* * than one BLOCK DATA subprogram. This allows undetected violatlons of rul.
specified in C28-6515. : : ‘

L]

’

b

DIAGNOSTICS o

: WATFIV {ssués complle-time diagnostics at three levels-of severity ~ EXTENSION,
_ WARNING and FRROR. A diagnostic is generated in-liné in the source ldsting, = . . . _ .
hmmediaﬁely below the statement in which the condition wag detected. :

An_ EXTENSION message results if you used an extension of the TFORTRAN ldngque
allowed by WATFIV. The diagnostic ia issued go that you can eliminate the pr.olem
1 should yoy ever wish to re-compile with IBM' '8 G or H compilera. ’ _
A WARNING is issued for language violations for which Lhe compiler can take
gsome reajonable corrective action, e.g., truncating a name of more -than 6 charactels.

An ERROR is issued when a language violation severe enough to prevent exécutiofi
is encountered. In this case, the compiler will normally inhibit execution of the
~program. unlaess you have specified RUN=FREE
~ At execution 'time, all errors are fatall in the sense that the compilar will
terminate the current job and proceed to the next job in the batch. For execution- -
time errors, the compiler generates a. diagnostic and a subprogram -traceback in the
printed output. This gives the line number of the statement in which the error
_occur¥ed, the name of the subprogram in which the error occurred, the name of the
subprogram which called it, etc., all the way back to the main program which is
referred - to as M/PROG. (The line number of each statement appears to the left of ft’
An the gource listing. This line number is compiler generated, and 1s distinct from -
and should not be confused with any FORTRAN statement number the programmer may hava '

as&igned to a statement.) ‘ : e%%ﬁ

B
’ T
Y . . t
= - i

~l.. Exzeption. If an I/0 error occurs and the programmer has spacifiad.an.ERRﬂ raturd‘

#- 4n the affected I/0 statement, an error meaaage is given and execution proceeds-at
: ,-tha statemanc specified by the ERRn - '

. NIIL.L? e

.....

Ravised 8/9/71 _ -

Control Cards ftor Certain Diagnoatics
i ~

Four Control cards have been added- in the VIL2 WATFIV compilar. The S$WARN and $NOWARN’
cards control the printing of compiller ganarat@d warning and extension messages; the
. $CHECK and $NOCHECK cards control the compiler's checking of undefined variables.

o When a SNOWARN card is placed in the source deck, all warning and extenslon)
messages will be suppressed from that point on. A $WARN card will allow the warning .

- and extenslion messages to be restarted 1f a $NOWARN card was usad or the NOWARN
option was punched on the job card. .

- " 1. When a $NOCHECK card is placed in the gource deck, from that point on, the
compiler bypasses the generatlon of object code to check for undefined viariables at
-axecutidn time. A SCHECK card causes the compiler to generate the chacking code if IR

- & $NOCHECK card appeared previously, or NOCHECK was specified (or defaulted) on the

$JOB card. .

The source deck uéing these new cards might be as follows:

$JDB XXXXX,SSS-$5-SSSS,NOWARN name 3
- compile with "CHFCK" -
no warning and extenslion messages

SWARN)
’ warning and extension messages may be printed
SNOCHECK .)
+ compile with '"NOCHECK" .- o
END '
Y $CHECK '
) subprograms
compile with "CHECK”
- END N
B SENTRY _ A
data cards
$IBSYS)

2. The S$SWARN/S$NOWARN and $SCHECK/$NOCHECK cards allow local control of their
functions. This can be useful if a program 1is being debugged in stages, with routines '
being added or changed over a sequence of runs. If a SNOCHECK card (or the NOCHECK '
job option) can be used because a segment of a program is known to be free of
undef ined variables, several advantages can result:

<

~less object code is generated; thus, a somewhat larger program can be compiled
for a given amount of available memory.
~the program will run somewhat faster since the checking code is not executed.

-
.y

Additional WATFIV Debugging Alds
Somg new dabugging alds have been added in the VIL2 version of WATFIV. They are
the DUMPLIST statement, the ON ERROR GOTO statement, and a statement trace facllity.

1} The DUMPLIST stptement is deaigned especially as a program debugging ald; it is
uged as follows:

(i) A DUMPLIST ‘statement is eggentially a NAMELIST statement, except that the
work DUMPLIST replaces the word NAMELIST. The usual rules for NAMELIST
- statements apply. Sample statements are: .

- DUMPLIST /XXX/A,XYZ,APE/LOK/XX,NEXT
o - DUMPLISNTHIS/N TWO, SIX,0LD 358

%

N - VIIT.l8 ¥

| moe e e it imecatiis e R e s S g S e - i e o i i R RENEE | I N S

\ ‘)
Revised 8/9/71 - '

~ »

(11) A DUMPLIST list name need never appear 1n3h READ or WRITE statement.

N (111) A DUMPLIST statement has no effect unless the program {n which it appoars
" is terminated because of an error condition; then WATFIV will automatically
generate NAMELIST - like output of all DUMPLIST lists appearing in program
segments which have been entered. The values printed are those which the .

variables had when the program was terminated.

To avold preducing too much output, only a few key variables should be placed
in DUMPLIST ststements.)

A

2) The ON ERROR GOTO statement allows a program whichhas an errox to recover and
take some alternate and possibly corrective action, such as gilving diagnosis. Thils
feature can only be executed ghce in a program (to prevent infinite loops) however,
~'any number of ON ERROR GOTO gtatemeént may appear in the source program. The last ON
ERROR GOTO statement encountered before an error occurs is the one which is executed.

A program using this Meature might be as follows:

$JOB xxxxx,sss~sé~sésq/yame
ON ERROR GOTO .50

' I=0 '
: 5 ° READ(S,*,END=40)A o,
] I=T1+1
| "PRINT,A
GO TO 5 . .
50 PRINT, "CARD NUMBER', I, '1S INVALID'
40 STOP .
- ~ END
SENTRY '
S$IBSYS
g, 3

The ON ERROR GOTO statement 1is not an executable statement; however, it can be
" placed anywhere in the program. It is not advisable to place an ON ERROR GOTO
sttatement within the range of a DO-loop as no checking is performed to detexrmine 1f the .
transfer at execution time will be valid (1.e., infinite looping may result). -

3) An execution time statement trace of "ISN trace”" feature is now available. The
trace is turned en using a $ISNON card and 1s turned off using a SISNOFF card. At
least one executable statement must precede a ISNON. & sample program follows:

$JOB XXXXX,SSS5-55-SSSS name Ve ' .
A=1 '
* J=3
SISNON .
- (statements to bea traced)
S ISNOFF ' , .
STOP ;
END /
SENTRY
$IBSYS

'3 t* ‘ .
VIIL.19 359 | :

Revised B8/9/71.

" INTERRUPTS

oy

This aaction provides information bn the treatﬂent of interrupts that may occur
during the execution of & FORTRAN program. .)

Normally, WATFIV terminates exacution of the program at the first occurrence ..
an exponent overflow, exponent underflow, fixed divide, or floating divide interrug..
However, a library subroutine, TRAPS, is provided to allow the programmer to accept

more interrupts of the types just mentioned. Thus, with appropriate uses of subroutine

DVCHK and OVERFL, a programmer may provide, to some extent, his own treatment of
interrupts.

A call to TRAPS may have up to five Integer valuved arguments, and these correspond

" --to the number of fixed overflows, exponent overflows, exponent underflows; fixed divida,

and floating divide interrupts the programmer wishes. The arguments of TRAPS set up
internal counters used by the compiler's interrupt rbut’ine. The latter routine
decrements the appropriate counter by 1 when an interrupt occurs; when any)¢ ~unter
reachea 7Lro, the program 1is terminated.

TRAPS may be called (and subsequently recalled) at any point in the main program
or a subprogram to sel (or resat) the interrupt counters. Arguments of TRAPS are
screened so that the absolute value of any negative argument 1s used as a positive
count, and a zero value {s taken to mean that the current value of the corresponding
interrupt counter ghould be left unchanged.

-«

EXAMPLES » - ;
1. CALL Téf:; (0,5,7,-3,1) | o

1

seta the interrupt coynters so that the program will be kicked off on the
occurrence of the first of the:

~5th exponent overflow, or
-7th exponent underflow, or

-3rd fixed divide, or
-lst floatinp divide exception following the executilon of this call to TRAIS.

<

The statement CALL TRAPS.(O,?,?,B)'haS the same effect.

2. LUNFLO = 100
LOVFLQ = LUNFLO
CALL TRAPS (U, LUNFLO, LOVFLO)

—

sets the counts to kick off the program on the occurrence of the first of the:

‘&ﬁlOOth exponent overflow, or

~100th exponent underflow, or

~lgt fixed divide, or d % s
~lst floating divide exception following the execution of this call,

>

3. CALL TRAPS (14)

sats the fixed overflow counter to 14, Kickoff would occur at the lst exponent
ovarflow, underflow or divide exaeption or the lith fixed overflow if the
installation has activigted this interrupt. NOTE that the distributed version
of WATFIV operated ¥ith this interrupt masked off, and furthermore, that this
is the normal mode of operation of FORTRAN G/H.,

o o viaeo 360
' o

T T

Revised 8/9/71

OVERFL, DVCHK . \

/

These routines function as follows:
CALL DVCHK (j)

, h| 15 an integer variable that ia set to 1 if tha (pseudo-) divide-check
indicator wae on, or to 2 if off. After testing, the indicator is turned off.

*

The indicator is set on when a fixed or floating divida exception occurs.
y CALL OVERFL (j) . . s

j is an integer variable that is set to reflect the most recent setting of
K3 psaudo Indicator, The variable j is set to 1 if an exponent oVerflow was lagt to o
occur, to 2 1f no exponent overflow or underflow condition exlats, or to 3 1f an
exponent underflow was last to occur. After testing, the indicator la set for no
condition, i.e., to 2.

NOTES :

l. The compiler interrupt routine loads the affected wmachine floating-point
reglster with zero or the properly:!sign largest floatimg-point number
for exponent underflow or overfilow, resiEZtivaly.

2. The five interrupt counterm are initlalized by the compiler to 1 at the start
of each program. The divide-check and overflow indloator are not
initialized; it 1s the programmer's reponsibility to do this, e.g., by
dunmy calls.

3. The terminating message 1s tha only indication given by the compller that
interrupts have occurred. It is the programmer's r39ponsibility to
monitor these usaing OVERFL and DVCHK.

4, WATFIV operates with the fixed overflow and significance int@rrupts magked

: off enptirely. .
: 5. WATFIV automatically corrects for boundary alignment. erﬁors at execution

time, but this 1s done with some overhead. Thus, progrsmmers are

advised to enaure_Jgat operands are aligned properly, where possible,

by steps taken at the source level.

¢

UNIT #1 ACTIVITIES TABLE

Aasassmght ?ﬁgk

Obtain about & dozen OMR carda. There is a bin with a sign

“"OMR Cards" above it in réom MS 09 in the basement.

Mark OMR cards as directed below, one card per direction.

*=3

letter "0" is indicated by "@" to distinguish it from zero,

whieh is just. "0."

Card

Card

Card
" Card
Card
Card

- Card

Card

Card

Car@

1:

9:

R

10:

Mark the "C@MMENT" box on the card, and mark

SAMPLE PRPCRAM beginning in column 1 of the

card.

Mark the "COMMENT'" box, and mark your name
beginning in column 1.

Mark A=2.1 beginning in column 1.

Mark B=2.6 ﬁeginning in column 1,

Mark C=0.6 begimmning in columnll.

Mark AN=3.0*A+B/(A;C) beginning in column 1.
Mark WRITE in the keyword Block of the card,
andxkhen mark (6,4)AN starting in column 1.
Mark a 4 in the "unit" column of the statement
numbers block of the cérd; mark F@ERMAT in the
keyword Block; and then mark (1ﬁO,FlO.1) start-
ing in_column 1. ' ’
Mark ST@P in the keyword block.

Mark END in the keyword block.

+

-
p
(3

X.2

The

o)

7

You will need three control cards for running your job on the
computer: a3JOB, SENTRY, and $IBSYS. The $JOB card is an
qran;},a co%and will be given to you by your inat;ru(‘:k)r'.
(APPENDIX 111, Section B: contains a detalled discussion of
the control cards, but probably you should save that till
later.) Make your own $ENTRY and $SIBSYS cards by marking
theJ SENTRY box on one card and the $IBSYS box on another
card. These boxes are located in the upper left center of
the OMR card. |
Arrange your cards in the following oxder:
$J0OB
CYMMENT SAMPLE PRUGRAM
COMMENT Your name
A=2.1
B=2.6 »
C=0.6 | ~
AN=3,0%A+B/ (A-C)
WRITE(6,4)AN
4 FPRMAT(IHO,F10.1)
STOP |
END
$ENTR&
" simsvs
Go to APPENDIX III, Section A, and take a ;elf~gﬁ1ded tour of
thg Computer Center facilities. |
Go to APPENDIX III1, Section C, and follow the’ directions for

running a job vexy cardfully. % .

-t

/"n

7. Now that you have mastered the User Terminal and have your
printed output én hand, check the output for error or warning
messages. If you have eithar or both, then probably you have
marked your cards incorrectly or your cards are not in the
proper order. Check the cards carefully, make corrections,
’and ;ry agaln. If you need help, see your instructor.

8.'IWhen your computer output contains no errors an 8 850
érinted as the "angwer" (after SENTRY),.then take it/ and

‘)
your program deck (remove the control caxds first) to your

-

instructor. If he approves your work, then you have passed

. the first hurdlel .

o .4 354

UNIT #2 ACTIVITIES TABLE

1. Read Section 4-1, pages 5%%60, of Fortran IV Programming for

Enpineers and\§cientiats by Murrill and Smith,

Y

XX.5 | |

" .
'. . * -
” ‘ v . .
\ : s
. . . . > - 1 .
N . N . N . . . N] .

0

9
UNIT #3 ACTIVITIES TABLE

All references are to FORTRAN IV Programming,for.Enéinaers ang

Scientists by Murrill and Smith.
. (0 .
‘1. Read the ifitroduction to Chapter 2 and Sectlons 2=1 and 2=2, -
pages 17-21.
2. Read Sections 2-3, 2-4, and 2-5, pages’ 21-26.,
3. Read Section 2~6, pages 26—58, and 2-8, pages 30-31. -
4. Work as.many of the Exercises, pageé 31-35, as you feel 4 need
for. (Solutions to Exerciges marked with a dagger 't are given

in Appendix E,’page 252.) 1f you need agsistance, see your

ingtructor.
o

)

T AsTel e m o e mgeRem e aalibal ST AN R bl e e = = e s e

) o UNIT #4 ACTIVITIES TABLE

References are to Fortran IV Programming for Engineera and

 $01Qntists by Murrill and Snith. .,
- 1. Read Section 2-7, pages 28-30.
- 2. Regd Section 4~2, pages 60-63.
; J. Section 2-6, phgea 26-28 discusges statements of the

form

N=N+1

whiFh is an example of a counter that counts by ones.

—~———

e N T -

-~

UNIT #5 ACTIVITIES TABLE

b}

A .

1. Read Chapter 1, pages 1-16, of Fortran IV Programming for

Enginéars and Scientists. You.don't need to bother too much

v
— e e .-

- . with'all the details; prz_;o geF.Fﬁé_ggpeygljideggi ?gym
partlicular attention, however, to the diséuaaion and italicized
; _ ' terms in Se;tiona iaé nnq l«?z The concepts of cdmpiling and
execution are of great imporﬁance.

2. You will need three control cards for running your job on the

-

|
-

computer: $JOB, $ENTRX, and $I1BSYS. The $JOB card is an orange
color and will be gilven to you by your instructor.

Read Appendix IXI, Section B, which tells you more‘hbout th

L4

control cards.

The simplest procedure at this point 48 for you to punch your
own $ENI§¥ and $IBSYS caxds, as described in Appendix IIT,

Section B. : ' .

3. Arrange your cards in the following order:
. ; ‘

»

. ' $JOB -

o

S Conment cards

TRY1=2.1 ’
TRY 22, 6
TRY3=0.6 :
ANSw3, O¥TRY1+IRY2/ (TRY1-TRY.3) !
WRITE(6,4)ANS .
| 4 FERMAT(1HO,¥10,1)

) sToe 5
END .

SENTRY . y -

$IBSYS C | o

N ‘_

6&

— i et s r—— ——— e an e

Next get an "80/80 listing" of your program. This listing pro-
vides a convenient Qay of checking your program and countrol cards
to make sure that the cards are in the proper order aﬁd that there
are no Reypunching errors. Read Appendix VI, which tells you how
to get an 80/80 1 stihg with the user terﬂiqﬁgl

g

Since You have already used the éard reader and the line printer
in UNIT #1, you shquldn't have any trouble, if you read the in-
structions on the wall and do what they say. If you do run into

problems, read Appendix IV on the card reader and Appandix V on

. ’

using the line printer. .

On;e you get the 80/80 listing, check it for errors. If there

. A

are errors, then make the necessary corrections, and get a new

listing. . . .

Sy

Keep the listing of the correct program, since you will need it

2
later.

¢

Since you have already run a job on the ugser terminal in UNIT #1,

then you may be able to go ahead and run your job withdut further

“ado. But, if you're not sure what to do, then do a and b below.

L3

a. Do you need to take the self-guided tour again? If so,

9

then go to Appendix IIX, Section A.
b. Go to Appendim.lII, Sectibn C, and v;ry carefully }ollow
the directions for running a job. |
When yoﬁ have the printer output_iﬁ hand, examine it forx e;rors.

If you have e;thek error or warnilng messages, then you probably

‘ ' A
have not punched your cards correctly or else one or more cards

IX.9 359

¥

(4

aré out of order. Check th&'carda carefully; make corrections,
r
and try again. If you neqé Q&}p, gee your Instructor.

Whan your computer output contains mo arro?ﬁ&and hag 8.0 print-

_ad as the "answer" (after SENTRY), then you ars fini.ued, (i you

have an 80/80 listing of the correct program. Keep the printed
output, the listing, and your program deck for the asgessment

task.

bl il

s

UNIT #6 (COMSC) ACTIVITIES TABLE

!

v ose

linless otherwise indicated all text referencas are to Fortranm

» .-

IV Programming for Enginears and Scientists by Murrill and Smith.

v "~

‘1. Read carefully chapter 3. Study the examples in Figures

-

3-2 ‘and 3-3. o

I “'\ . . '.
2. Complete as many of the exercises at the;end of Chapter 3

-

(pages 55-~58) as you feel are necessary .to learn about in~

put/output using X, F, X, H and fliieral"type conversions.
. - _ . .o S)
In particular do exercises 3-~15 and 3-18 so youo can chéck

" your results. Be sure to include trial data cards as

i stressed 1§ the italics on page 56.

L

' To be certain that you understand the materials properly,

*phnch_up a cowpleﬁe prograin deck ihcluding control cards and

data for either exéxciae 3-15 or 3-18 and run it on the com-

puter. ") S .

o . ’
“ , . t
' &
'

3. #iine fields of varidus widtﬁs are punched oﬁ?the%éccpmpany~
® -

'40-;:-

ing_daia card. These fielda are indicated by the numbere
)
1, 2, 3, ive, etc, Decimal points are punched in all fielda

which contain numbers of type REAL. Fields“ghiéh are to be

regaidedlaa integer fields do not contain-a decimaltpoint.

»

. Prapara a Foftran program (include documeu&ation) to read

<
and print the data. -Write all the 1nteger numbars first

a by - .8

L : BN W R
Yo, " : DRy, ey - . w-.__v...?_ .

-:ix.li';-_ 3.'71 e,

——

”

‘under the heading THE INTEGER NUMBERS.

O
Triple space and

write the heading THE REAL NUMBERS and the real numbers

when printing.

and punch your program.

¢

"under that heading.

Separate all fields by two blank columns

Punch a data card exactly like the one shown,

Run the program first on the 360.
n

When the output is correct, then run your program on the IBM

1130, réferring to Appendix VII for instructions.

printed outputs of both computers to your instructor prior

Show the

to requesting the assessment task.

B e T e S,

8320. 87| 1 453 124, 45 11. 12, 37 21L X
1224 5. 1 8)s 0 Ilrlz Bl g 219 .‘Tt IPAPB WY WNIABUBKY)i. [u.ume’ncu MI2NMI 3973030006162 61864050661¢869100 N 1 lN“H 16 1% 181900
&T_TI}F_EIT[ZE 1) D ERE D0 LI HIEEDE M EEE) ‘mmMr zﬂMﬁl‘;ﬂJnIﬂD
> .
goooogonqoouuouuoouuoouui L CAACE JLEALCNCEA LA COIAL I BT 00600060000000000000000600
« '
ARRERRRE IRRIT R IRERRRIIREII R LUIRRR IRERT | BT 1 IRRE SRR RERARE RN ERERRRRERERRERERRRRRRR
gzzzgzzznu Mr22222222 2220222222222 22122 2)22222222222222222222222222221222
[]
g33]33]33-33333333333.333#33'3 W33 333330 3"3133333333333333@33333333333333333333
Vasa44a44faas A4l 44 adlaad AMAAN 44242 aJ44 44144 alla444444004444404444444448444444
§-55555555555 5515-55 505555 55.5J555555556'5555555555555555555555555555“555555555
T 21 3 4 {? & 819 ,
glssessss 66]66666% 6* ssssasssssssssss.sssﬂssssssssssssssssssssssssssssss_s»
IRREREE] |IREIIBE IRRERERE 777|777771777777]{77777777777777]777777.77777777777777.
s@essBlojsesjsansassasisalsasas ssassasaalasaltaasasusnssssaa‘s888saaaséasssaasuaaé
9999.9959.939999999999399.99999999999999999}9599{99 999ssss999999999999999999999 9998
23488 2 efvpnRydwjis e v wwaotn 2342821 30 90 3330 14 35 35 37 32)3 A0RIIT €3 44 4506 47 MR 4 waun 3389 ucasmmmumnnmnmrunu

\

<

G

<t

N UNIT #8 ACTIVITIES TABLE

f
/ “w

All references are to FORTRAN IV Programming for Engineers and

8cientists by Murrill and Swuith. ¢

P

1. Read Section 4-3, pages 63-66.
2. Read Section 4-4, page 66.

3. Read Section 4-5, pages 66-70.
__A. Read Section 4-6, pagesn 70-72.

5. Read Sections 4-7 and 4-8, pages 73-77.

-

i e

- L}
1 UNIT #9 ACTIVITIES TABLE
All references are to FORTRAN IV Programming for Engineers and
Scientists by Murrill and Smith, unless stated othervise.
1. Read Chapter 5, pages 80-97.
2, Work: problem 5-2, page 98, and check your program by the
one given on pages 264-265. Run it om the computer if you
wish.)
"3. WorRk-problem 5-6, page 98, and check your prégram by the
one given on page 266, Run it on the computer if you wish. _
<& : -
. ~
" .'x‘ .
\ L]
*»
‘ ' e
. : " "
’ %o . e ' ' ’ l T e ¢ i '. ot
¢ ') W ° » ' .
1§ ¢) . -
N . -
v #" . . > '
L} ¥
< . 137l§
It IX. 14 *

w-

UNIT #10 ACTIVITIES TABLE

"All references are to Fortran ;y‘ProgréEming for Engineerxs and ¢

-Sgigqgiﬂgé by Murrill and Smith.

»

1.

2". ‘

: 3.

-
-

e

Read Chapter 6,:pages,102w118. Pay partiéﬁlan attention to the
rules stated in Sections 6-3 and 6-4.
Work problem 6-1, page 118. Run ypur program on the computer.

(One solution ié'spcwn on the next page.).

-~
T -

Work problem 6~2, page 118, In addition to printing b and fgb},.

print the.coéfficienta in a-cieaily 1aﬁe;ed format. Use the -

-~ L]

factored form of a polynoinial for the calculation. The program

-

must be genetql, Run your program on a computer and show yow!
Lo ‘. ., . .] -

'3

printer output.to your instructor before you take the assessment

L4

Vfﬁskg

,35" ‘:ﬁ"

. !) aw

- N T | \ -
' . . & ‘ i o - ‘:) ’/-
z ' AN
~ $J0B mmwméas{mm‘?m COMSC 2112
- C SELF EVALUATION, ACTIVITY 2.
C CALCULATE N FACTORIAL. . °
C TBM 360 WATFIV, "
c. . \ e :
- 1 .7 DATA IN,LP/SG67 - % S
2 READ (IN,1)N ¢ -
i 1 FORMAT(I3) . ‘ ‘
4 - IF(N)10,11,12 s
CHiwkkdk ERROR, N IS NEGATIVE.
5 10 WRITE(LP,2)N -
) 6 2 FORMAT(' N IS NEGATIVE. N = ',13)
o 7 7 STOP : ’
Tl . CwWkdokdk N TS ZERO. N FACTORIAL IS 1.
o 8 11 NFal .
S 9 GO TO 20 5&;_ ,
. . ChkkRERN N > ZBRO. CALCULATE N FACTORIAL. e
‘ 10 . 12 NF=l. - et :
11 DO 13 Jwl,N .
12 NF=NF#.J - ot E o
13 13 CONTINUE - . 'i;;fqa_
14 20 WRITE(LP,3)N,NF o = L
15 -~ 3 FORMAT(*- N = ° 13/' N FACTORIAL "= ,1&0? o
16 STOP i , _,,;-.'-' ‘- OO
17 . END fi- ' L
SENTRY e . - ;
Nw 8 ‘ T | - L - e
N FACTORIAL = 40320 ' R -
1 - . 3 ,;(
CORE USAGE . OBJECT CODE= 5152 BYTES,ARRAY AREA= . 0 BY'
COMPILE TIME= ~ 0.73 SEC,EXECUTION TIME= ~ 0.0 SEC, WATFIV ¢
£ ' o ‘ / '
-) T
. ¢ . -
oL S S
. o ~,q; -

- vy)
- - I3 a Ix. 16 ¢
‘ ° o
“- P N 3 © [o o L
o . "& . ' 2
Sy
> Tk . © 4 : ;
¢ L - i ¥ ° . . ::,: E
- - ~ .

AR AT St st s e e L e e Edantn - AR - T st b e - PP = U T IR R S

M }
- " UNEDX #11 ACTIVITIES TABLE - _ '
. ' ’ .
References are to Fortran IV Progmmn_xiﬂg for Bk\ginéa.rs and Sclentists
by Murrill and Smith. /) H S ' - ’)
1. Read Chapter 7, Sections 1-10, pages 137~155. N
2. Work ‘problem 7-3, pages 160-161. Run the program on the computer.
_ . s - _ .
One solution to the program is given on pages 284-285. - ®
3 .‘\ - a .
. - L] -

L . . N
A *
. +
. -
- L
- 1]
é 'S . -
<
- -
- .
» ~ €
.
.
i . .
. y = - . w c.
1 . s
% N
’ . ~ . X
-
- - - .~
» o
e -
- »
e . - N - L] AN
lh. . he
N \
.
L)
®
.
o O

. T
L
Id

.
= A o provided by exic [.".

~

’ {
.o -e_
[
‘ UNIT #13 ACTIVITIES TABLE §
’ - .) - \ ;\\ .
. Unless specified otherwige, all text references are to FORTRAN e
T PROGRAMMING FOR ENGINEERS AND SCIENTISTS.by Murrlll and Smith.
- Activity 1: Read Sactlon 2-5, pages 25-26. o .
Activity 2: Read the introduction to Chapter 9 and
Section 9-1, pages 188-190.
L _ N Activity 3: Read Section 9-2, pages 190~194,
‘ w ;,-.z ;Activity 4: Work problem 9"14;.paga 213. Check your
. + P resultd against the solution given on
A T ‘ ’ page 303. o o
. L ;j-f ? - “Activity 5: Read Section 9-3, bages 194-195.7 e L. S
AR . Read Section 9-4, pages 195-197.) v
'e' . . ey .. L\ ¢
<)) {f H&ctivity 6: Read Section -5, pages 197-202. .
Activitg;?c- Work the first part of 923, page 214. P
L Check your results againgt the solution
: “"givénfqp page 306. . (A veetor 1s simply -
R A siggle~-diménsional "array of numbers; &
" multiply sach element of the array by
. a single number, a scalar qudntity.)
» 1 e ., . 0
18 2 T e . i
.i."’; R . v v
P . b . 3 » 'ﬂ ° : -
R e , | el
'.V‘ "“ ‘t I : - L4 . 0;" . ‘:’-l-km.,". e
BRI ¢ 0, 7 Ll . ’ s _G{ & l .":.“_.:‘?‘ "'... '
S - G ' . ' S .1. i] - ' .("~.;\," ' * ~a
‘\ <3°._. ‘\.5y-:‘,‘;§;:‘ '-__‘ | lee LA '.. : ‘_‘_'z") ""‘E“h . oo ;.;" e /9 . ‘~:$\“ .: a e .~‘_ '.’:" 7,'*:.::'_
cgni e BN e N AP S
l._:i-. 0.:&‘\ ;:g . ﬂ-; ‘:_\-_~ ? (': ." v e :“ .:,"p -~ .l._ ‘-"' ‘ . 1‘:_ L 0 ,.';‘ }.;'\,a) N ,4‘:6' :.‘.A-l~ - ‘.‘
‘ :} . ' c-'.' . \ . \ > .-“ : ".3"&.“ ‘ . '.;; | v d ..) ' ' e o /'50".5: i 7 '.:Evz.",";'f- ?An‘ .{qu:x'"_"_“fﬂ F‘\:‘\‘:ﬁ
- T B) « ' ® da @ . ',.,*‘f' * § . “.',--"'- o "_:.:" ‘ NI 3 -
1.', o . L N ! "-oi;;' --?/’_: 3 ! }

st el

' E l
PAruiitex: providea vy enic [l

b\t

]

| ;!;c

UNIT #14 ACTIVITIES TABLE

Read the following references in Fortran w Prdgramming for Engineers

and Sclentists by Murrill and Smith: ' e
1. First paragraph of Section 3-5, page 49,
2. Saccfﬁn“ﬁfgf\ﬁﬁgea 52-54.
r .
Q . T o~
. 'Y .
X S b ' .
. ') 7 W ')
» C/ rl
) s - . .
P ' . .
. "y g t "
LY ‘ s / o

g Coe b lll 3 . I

UNIT #16 COMSC) ACTIVITIES TABLE

\
Read pages 117 to 150 of the book Introduction to Computer

Science by John K. Rice and John R. Rice, published by Holt,

Rinehart and Winston. ' SN

'

Reread Chapter 1, pages 1-16, df Fortyan IV Programming fqy
Enginears -and Scientists.
. . . g s
J

R e

o R e SRR ek T

1R

UNIT 17 ACTIVITIES TABLE

. . -
.

Read Chapter 10, pages 216-225, in Fortran IV Programming fox

Engineers and Scientigts by Murrill and Smith.
-~ i

\

[
¢
3
N
- -
¢
&
¢
Qg >
. v .)
\ (
al‘ .
- L]
S
. "
[N
A
°
H
B
h] -
°
’
»
. .
.
& - .
4 .
-
4
. -
-
-
- s 4
<
)
- J -
AL
° ' l;- (;' .
® LW
-
IX.21 . -
’ !
2 B Y a
L]
» ' .
- . ’ »
.
N e
N L4 .
.- 1
s .
K) f,
- L2
A .

-lxr-q-,-;- =

-x\w-‘v ‘w;%;f VI CIRIN
S Lgrmms

- AR T . 'HIGHER mmm 1w sazms
S . § A@?zsc::mms

P Froperty of
S o SR ms mmm SCLENCE ?ommm:

S . oY . ~— . . . e g o, . i 3o =
. GENERAL - 17| -
' FORTRAN Pa.c@iws ’ ‘

“ . | - PR A ¥ : o _
| T T A e S B
CONCEPTS ' DEBUGGING B ¢ CONCEPTS, . RN
-, NI) i T T — .
N+ = e meeimrn s b me o e ene e e s m + e ot e et o e e : , ,% - - - = -
e . .. BN vnetmamames .
FO!;}mTS 1 N _ - SUBPROGRAMS 13 y
R I Q i EECT) B .

T - ; \ . e N

- - A * ' n '—;F '1- N ¥] . . N. ._.,'." .
. LooPs, - 10| ' S
- , | _

'. TTERATION \

T A\ I ! .
R : ARRAYS, - 9 \ '

' . SURSCRIPTED VARIABLES

v R

CONDITIONAL 8 e .
BRANGHES - | L :

g T ‘ ,
;,’ - WMTE) . . .) - . '7 PR '\l‘ ‘ g
KEYPUNCHING LA - ° ' L&

PROGRAM DOCUMENTATION o '
RUNNING A S8IMPLE JOB) -

| T | FORTRAN PROGRAMMING
_ UNGONDITION-" o HEERARGHY .
- AL BRANGHES . -

STATEMENT .

—

B CONSTANTS O .
VARTABLES S A
FLOWCHARTS. | wowmsszos | B R
T : o ASSTONMENT - - .
N . | sraTRMENTS | ,
' . .‘. ‘., o - e .3] / : oot -

.
~

. ~ - il . Y. _

e L~ . . X 3 D j " N . . "' R TN Lo
SO R - Cof rman maMzne 0 Yl 0 o T e
R - + LARIEATION - S . I RN

‘ - T o OMR CAEDS S . e .ot
e - L Qnpediate aycceds unif) n T . 4

1]

. ° . .
S - '-
- d .
. ﬁ B
: h e L) * P>} © .
. s - ; e
5 Cl
. .. " ~ *a I _’\f
¥ . . R
- . o S ed
® - - Ly
Yo . - R S
. e ..
- o : : . .

